Cargando…

Comparison of Novel Wide-Field In Vivo Corneal Confocal Microscopy With Skin Biopsy for Assessing Peripheral Neuropathy in Type 2 Diabetes

Diabetic peripheral neuropathy (DPN) is a serious complication of diabetes, where skin biopsy assessing intraepidermal nerve fiber density (IENFD) plays an important diagnostic role. In vivo confocal microscopy (IVCM) of the corneal subbasal nerve plexus has been proposed as a noninvasive diagnostic...

Descripción completa

Detalles Bibliográficos
Autores principales: Badian, Reza A., Ekman, Linnéa, Pripp, Are Hugo, Utheim, Tor Paaske, Englund, Elisabet, Dahlin, Lars B., Rolandsson, Olov, Lagali, Neil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281223/
https://www.ncbi.nlm.nih.gov/pubmed/37058418
http://dx.doi.org/10.2337/db22-0863
Descripción
Sumario:Diabetic peripheral neuropathy (DPN) is a serious complication of diabetes, where skin biopsy assessing intraepidermal nerve fiber density (IENFD) plays an important diagnostic role. In vivo confocal microscopy (IVCM) of the corneal subbasal nerve plexus has been proposed as a noninvasive diagnostic modality for DPN. Direct comparisons of skin biopsy and IVCM in controlled cohorts are lacking, as IVCM relies on subjective selection of images depicting only 0.2% of the nerve plexus. We compared these diagnostic modalities in a fixed-age cohort of 41 participants with type 2 diabetes and 36 healthy participants using machine algorithms to create wide-field image mosaics and quantify nerves in an area 37 times the size of prior studies to avoid human bias. In the same participants, and at the same time point, no correlation between IENFD and corneal nerve density was found. Corneal nerve density did not correlate with clinical measures of DPN, including neuropathy symptom and disability scores, nerve conduction studies, or quantitative sensory tests. Our findings indicate that corneal and intraepidermal nerves likely mirror different aspects of nerve degeneration, where only intraepidermal nerves appear to reflect the clinical status of DPN, suggesting that scrutiny is warranted concerning methodologies of studies using corneal nerves to assess DPN. ARTICLE HIGHLIGHTS: Comparison of intraepidermal nerve fiber density with automated wide-field corneal nerve fiber density in participants with type 2 diabetes revealed no correlation between these parameters. Intraepidermal and corneal nerve fibers both detected neurodegeneration in type 2 diabetes, but only intraepidermal nerve fibers were associated with clinical measures of diabetic peripheral neuropathy. A lack of association of corneal nerves with peripheral neuropathy measures suggests that corneal nerve fibers may be a poor biomarker for diabetic peripheral neuropathy.