Cargando…

Transgenerational sperm DMRs escape DNA methylation erasure during embryonic development and epigenetic inheritance

Germline transmission of epigenetic information is a critical component of epigenetic inheritance. Previous studies have suggested that an erasure of DNA methylation is required to develop stem cells in the morula embryo. An exception involves imprinted genes that escape this DNA methylation erasure...

Descripción completa

Detalles Bibliográficos
Autores principales: Ben Maamar, Millissia, Wang, Yue, Nilsson, Eric E, Beck, Daniel, Yan, Wei, Skinner, Michael K
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281242/
https://www.ncbi.nlm.nih.gov/pubmed/37346491
http://dx.doi.org/10.1093/eep/dvad003
Descripción
Sumario:Germline transmission of epigenetic information is a critical component of epigenetic inheritance. Previous studies have suggested that an erasure of DNA methylation is required to develop stem cells in the morula embryo. An exception involves imprinted genes that escape this DNA methylation erasure. Transgenerational differential DNA methylation regions (DMRs) have been speculated to be imprinted-like and escape this erasure. The current study was designed to assess if morula embryos escape the erasure of dichlorodiphenyltrichloroethane–induced transgenerational sperm DMR methylation. Observations demonstrate that the majority (98%) of transgenerational sperm DMR sites retain DNA methylation and are not erased, so appearing similar to imprinted-like sites. Interestingly, observations also demonstrate that the majority of low-density CpG genomic sites had a significant increase in DNA methylation in the morula embryo compared to sperm. This is in contrast to the previously observed DNA methylation erasure of higher-density CpG sites. The general erasure of DNA methylation during embryogenesis appears applicable to high-density DNA methylation sites (e.g. CpG islands) but neither to transgenerational DMR methylation sites nor to low-density CpG deserts, which constitute the vast majority of the genome’s DNA methylation sites. The role of epigenetics during embryogenesis appears more dynamic than the simple erasure of DNA methylation.