Cargando…
Explaining machine-learning models for gamma-ray detection and identification
As more complex predictive models are used for gamma-ray spectral analysis, methods are needed to probe and understand their predictions and behavior. Recent work has begun to bring the latest techniques from the field of Explainable Artificial Intelligence (XAI) into the applications of gamma-ray s...
Autores principales: | Bandstra, Mark S., Curtis, Joseph C., Ghawaly, James M., Jones, A. Chandler, Joshi, Tenzing H. Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281578/ https://www.ncbi.nlm.nih.gov/pubmed/37339151 http://dx.doi.org/10.1371/journal.pone.0286829 |
Ejemplares similares
-
Free-moving Quantitative Gamma-ray Imaging
por: Hellfeld, Daniel, et al.
Publicado: (2021) -
Advances in Nuclear Radiation Sensing: Enabling 3-D Gamma-Ray Vision
por: Vetter, Kai, et al.
Publicado: (2019) -
Explainable machine learning for precise fatigue crack tip detection
por: Melching, David, et al.
Publicado: (2022) -
A wind environment and Lorentz factors of tens explain gamma-ray bursts X-ray plateau
por: Dereli-Bégué, Hüsne, et al.
Publicado: (2022) -
Principles and Practice of Explainable Machine Learning
por: Belle, Vaishak, et al.
Publicado: (2021)