Cargando…
Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich’s ataxia
Objective: In Friedreich’s ataxia (FRDA), the most affected tissues are not accessible to sampling and available transcriptomic findings originate from blood-derived cells and animal models. Herein, we aimed at dissecting for the first time the pathophysiology of FRDA by means of RNA-sequencing in a...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281753/ https://www.ncbi.nlm.nih.gov/pubmed/37027192 http://dx.doi.org/10.1093/hmg/ddad051 |
_version_ | 1785061056660373504 |
---|---|
author | Indelicato, Elisabetta Kirchmair, Alexander Amprosi, Matthias Steixner, Stephan Nachbauer, Wolfgang Eigentler, Andreas Wahl, Nico Apostolova, Galina Krogsdam, Anne Schneider, Rainer Wanschitz, Julia Trajanoski, Zlatko Boesch, Sylvia |
author_facet | Indelicato, Elisabetta Kirchmair, Alexander Amprosi, Matthias Steixner, Stephan Nachbauer, Wolfgang Eigentler, Andreas Wahl, Nico Apostolova, Galina Krogsdam, Anne Schneider, Rainer Wanschitz, Julia Trajanoski, Zlatko Boesch, Sylvia |
author_sort | Indelicato, Elisabetta |
collection | PubMed |
description | Objective: In Friedreich’s ataxia (FRDA), the most affected tissues are not accessible to sampling and available transcriptomic findings originate from blood-derived cells and animal models. Herein, we aimed at dissecting for the first time the pathophysiology of FRDA by means of RNA-sequencing in an affected tissue sampled in vivo. Methods: Skeletal muscle biopsies were collected from seven FRDA patients before and after treatment with recombinant human Erythropoietin (rhuEPO) within a clinical trial. Total RNA extraction, 3′-mRNA library preparation and sequencing were performed according to standard procedures. We tested for differential gene expression with DESeq2 and performed gene set enrichment analysis with respect to control subjects. Results: FRDA transcriptomes showed 1873 genes differentially expressed from controls. Two main signatures emerged: (1) a global downregulation of the mitochondrial transcriptome as well as of ribosome/translational machinery and (2) an upregulation of genes related to transcription and chromatin regulation, especially of repressor terms. Downregulation of the mitochondrial transcriptome was more profound than previously shown in other cellular systems. Furthermore, we observed in FRDA patients a marked upregulation of leptin, the master regulator of energy homeostasis. RhuEPO treatment further enhanced leptin expression. Interpretation: Our findings reflect a double hit in the pathophysiology of FRDA: a transcriptional/translational issue and a profound mitochondrial failure downstream. Leptin upregulation in the skeletal muscle in FRDA may represent a compensatory mechanism of mitochondrial dysfunction, which is amenable to pharmacological boosting. Skeletal muscle transcriptomics is a valuable biomarker to monitor therapeutic interventions in FRDA. |
format | Online Article Text |
id | pubmed-10281753 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-102817532023-06-21 Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich’s ataxia Indelicato, Elisabetta Kirchmair, Alexander Amprosi, Matthias Steixner, Stephan Nachbauer, Wolfgang Eigentler, Andreas Wahl, Nico Apostolova, Galina Krogsdam, Anne Schneider, Rainer Wanschitz, Julia Trajanoski, Zlatko Boesch, Sylvia Hum Mol Genet Original Article Objective: In Friedreich’s ataxia (FRDA), the most affected tissues are not accessible to sampling and available transcriptomic findings originate from blood-derived cells and animal models. Herein, we aimed at dissecting for the first time the pathophysiology of FRDA by means of RNA-sequencing in an affected tissue sampled in vivo. Methods: Skeletal muscle biopsies were collected from seven FRDA patients before and after treatment with recombinant human Erythropoietin (rhuEPO) within a clinical trial. Total RNA extraction, 3′-mRNA library preparation and sequencing were performed according to standard procedures. We tested for differential gene expression with DESeq2 and performed gene set enrichment analysis with respect to control subjects. Results: FRDA transcriptomes showed 1873 genes differentially expressed from controls. Two main signatures emerged: (1) a global downregulation of the mitochondrial transcriptome as well as of ribosome/translational machinery and (2) an upregulation of genes related to transcription and chromatin regulation, especially of repressor terms. Downregulation of the mitochondrial transcriptome was more profound than previously shown in other cellular systems. Furthermore, we observed in FRDA patients a marked upregulation of leptin, the master regulator of energy homeostasis. RhuEPO treatment further enhanced leptin expression. Interpretation: Our findings reflect a double hit in the pathophysiology of FRDA: a transcriptional/translational issue and a profound mitochondrial failure downstream. Leptin upregulation in the skeletal muscle in FRDA may represent a compensatory mechanism of mitochondrial dysfunction, which is amenable to pharmacological boosting. Skeletal muscle transcriptomics is a valuable biomarker to monitor therapeutic interventions in FRDA. Oxford University Press 2023-04-07 /pmc/articles/PMC10281753/ /pubmed/37027192 http://dx.doi.org/10.1093/hmg/ddad051 Text en © The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Original Article Indelicato, Elisabetta Kirchmair, Alexander Amprosi, Matthias Steixner, Stephan Nachbauer, Wolfgang Eigentler, Andreas Wahl, Nico Apostolova, Galina Krogsdam, Anne Schneider, Rainer Wanschitz, Julia Trajanoski, Zlatko Boesch, Sylvia Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich’s ataxia |
title | Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich’s ataxia |
title_full | Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich’s ataxia |
title_fullStr | Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich’s ataxia |
title_full_unstemmed | Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich’s ataxia |
title_short | Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich’s ataxia |
title_sort | skeletal muscle transcriptomics dissects the pathogenesis of friedreich’s ataxia |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281753/ https://www.ncbi.nlm.nih.gov/pubmed/37027192 http://dx.doi.org/10.1093/hmg/ddad051 |
work_keys_str_mv | AT indelicatoelisabetta skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia AT kirchmairalexander skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia AT amprosimatthias skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia AT steixnerstephan skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia AT nachbauerwolfgang skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia AT eigentlerandreas skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia AT wahlnico skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia AT apostolovagalina skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia AT krogsdamanne skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia AT schneiderrainer skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia AT wanschitzjulia skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia AT trajanoskizlatko skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia AT boeschsylvia skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia |