Cargando…

Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich’s ataxia

Objective: In Friedreich’s ataxia (FRDA), the most affected tissues are not accessible to sampling and available transcriptomic findings originate from blood-derived cells and animal models. Herein, we aimed at dissecting for the first time the pathophysiology of FRDA by means of RNA-sequencing in a...

Descripción completa

Detalles Bibliográficos
Autores principales: Indelicato, Elisabetta, Kirchmair, Alexander, Amprosi, Matthias, Steixner, Stephan, Nachbauer, Wolfgang, Eigentler, Andreas, Wahl, Nico, Apostolova, Galina, Krogsdam, Anne, Schneider, Rainer, Wanschitz, Julia, Trajanoski, Zlatko, Boesch, Sylvia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281753/
https://www.ncbi.nlm.nih.gov/pubmed/37027192
http://dx.doi.org/10.1093/hmg/ddad051
_version_ 1785061056660373504
author Indelicato, Elisabetta
Kirchmair, Alexander
Amprosi, Matthias
Steixner, Stephan
Nachbauer, Wolfgang
Eigentler, Andreas
Wahl, Nico
Apostolova, Galina
Krogsdam, Anne
Schneider, Rainer
Wanschitz, Julia
Trajanoski, Zlatko
Boesch, Sylvia
author_facet Indelicato, Elisabetta
Kirchmair, Alexander
Amprosi, Matthias
Steixner, Stephan
Nachbauer, Wolfgang
Eigentler, Andreas
Wahl, Nico
Apostolova, Galina
Krogsdam, Anne
Schneider, Rainer
Wanschitz, Julia
Trajanoski, Zlatko
Boesch, Sylvia
author_sort Indelicato, Elisabetta
collection PubMed
description Objective: In Friedreich’s ataxia (FRDA), the most affected tissues are not accessible to sampling and available transcriptomic findings originate from blood-derived cells and animal models. Herein, we aimed at dissecting for the first time the pathophysiology of FRDA by means of RNA-sequencing in an affected tissue sampled in vivo. Methods: Skeletal muscle biopsies were collected from seven FRDA patients before and after treatment with recombinant human Erythropoietin (rhuEPO) within a clinical trial. Total RNA extraction, 3′-mRNA library preparation and sequencing were performed according to standard procedures. We tested for differential gene expression with DESeq2 and performed gene set enrichment analysis with respect to control subjects. Results: FRDA transcriptomes showed 1873 genes differentially expressed from controls. Two main signatures emerged: (1) a global downregulation of the mitochondrial transcriptome as well as of ribosome/translational machinery and (2) an upregulation of genes related to transcription and chromatin regulation, especially of repressor terms. Downregulation of the mitochondrial transcriptome was more profound than previously shown in other cellular systems. Furthermore, we observed in FRDA patients a marked upregulation of leptin, the master regulator of energy homeostasis. RhuEPO treatment further enhanced leptin expression. Interpretation: Our findings reflect a double hit in the pathophysiology of FRDA: a transcriptional/translational issue and a profound mitochondrial failure downstream. Leptin upregulation in the skeletal muscle in FRDA may represent a compensatory mechanism of mitochondrial dysfunction, which is amenable to pharmacological boosting. Skeletal muscle transcriptomics is a valuable biomarker to monitor therapeutic interventions in FRDA.
format Online
Article
Text
id pubmed-10281753
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-102817532023-06-21 Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich’s ataxia Indelicato, Elisabetta Kirchmair, Alexander Amprosi, Matthias Steixner, Stephan Nachbauer, Wolfgang Eigentler, Andreas Wahl, Nico Apostolova, Galina Krogsdam, Anne Schneider, Rainer Wanschitz, Julia Trajanoski, Zlatko Boesch, Sylvia Hum Mol Genet Original Article Objective: In Friedreich’s ataxia (FRDA), the most affected tissues are not accessible to sampling and available transcriptomic findings originate from blood-derived cells and animal models. Herein, we aimed at dissecting for the first time the pathophysiology of FRDA by means of RNA-sequencing in an affected tissue sampled in vivo. Methods: Skeletal muscle biopsies were collected from seven FRDA patients before and after treatment with recombinant human Erythropoietin (rhuEPO) within a clinical trial. Total RNA extraction, 3′-mRNA library preparation and sequencing were performed according to standard procedures. We tested for differential gene expression with DESeq2 and performed gene set enrichment analysis with respect to control subjects. Results: FRDA transcriptomes showed 1873 genes differentially expressed from controls. Two main signatures emerged: (1) a global downregulation of the mitochondrial transcriptome as well as of ribosome/translational machinery and (2) an upregulation of genes related to transcription and chromatin regulation, especially of repressor terms. Downregulation of the mitochondrial transcriptome was more profound than previously shown in other cellular systems. Furthermore, we observed in FRDA patients a marked upregulation of leptin, the master regulator of energy homeostasis. RhuEPO treatment further enhanced leptin expression. Interpretation: Our findings reflect a double hit in the pathophysiology of FRDA: a transcriptional/translational issue and a profound mitochondrial failure downstream. Leptin upregulation in the skeletal muscle in FRDA may represent a compensatory mechanism of mitochondrial dysfunction, which is amenable to pharmacological boosting. Skeletal muscle transcriptomics is a valuable biomarker to monitor therapeutic interventions in FRDA. Oxford University Press 2023-04-07 /pmc/articles/PMC10281753/ /pubmed/37027192 http://dx.doi.org/10.1093/hmg/ddad051 Text en © The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Original Article
Indelicato, Elisabetta
Kirchmair, Alexander
Amprosi, Matthias
Steixner, Stephan
Nachbauer, Wolfgang
Eigentler, Andreas
Wahl, Nico
Apostolova, Galina
Krogsdam, Anne
Schneider, Rainer
Wanschitz, Julia
Trajanoski, Zlatko
Boesch, Sylvia
Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich’s ataxia
title Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich’s ataxia
title_full Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich’s ataxia
title_fullStr Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich’s ataxia
title_full_unstemmed Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich’s ataxia
title_short Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich’s ataxia
title_sort skeletal muscle transcriptomics dissects the pathogenesis of friedreich’s ataxia
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281753/
https://www.ncbi.nlm.nih.gov/pubmed/37027192
http://dx.doi.org/10.1093/hmg/ddad051
work_keys_str_mv AT indelicatoelisabetta skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia
AT kirchmairalexander skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia
AT amprosimatthias skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia
AT steixnerstephan skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia
AT nachbauerwolfgang skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia
AT eigentlerandreas skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia
AT wahlnico skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia
AT apostolovagalina skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia
AT krogsdamanne skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia
AT schneiderrainer skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia
AT wanschitzjulia skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia
AT trajanoskizlatko skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia
AT boeschsylvia skeletalmuscletranscriptomicsdissectsthepathogenesisoffriedreichsataxia