Cargando…

tidytof: a user-friendly framework for scalable and reproducible high-dimensional cytometry data analysis

SUMMARY: While many algorithms for analyzing high-dimensional cytometry data have now been developed, the software implementations of these algorithms remain highly customized—this means that exploring a dataset requires users to learn unique, often poorly interoperable package syntaxes for each ste...

Descripción completa

Detalles Bibliográficos
Autores principales: Keyes, Timothy J, Koladiya, Abhishek, Lo, Yu-Chen, Nolan, Garry P, Davis, Kara L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281957/
https://www.ncbi.nlm.nih.gov/pubmed/37351311
http://dx.doi.org/10.1093/bioadv/vbad071
_version_ 1785061091649257472
author Keyes, Timothy J
Koladiya, Abhishek
Lo, Yu-Chen
Nolan, Garry P
Davis, Kara L
author_facet Keyes, Timothy J
Koladiya, Abhishek
Lo, Yu-Chen
Nolan, Garry P
Davis, Kara L
author_sort Keyes, Timothy J
collection PubMed
description SUMMARY: While many algorithms for analyzing high-dimensional cytometry data have now been developed, the software implementations of these algorithms remain highly customized—this means that exploring a dataset requires users to learn unique, often poorly interoperable package syntaxes for each step of data processing. To solve this problem, we developed {tidytof}, an open-source R package for analyzing high-dimensional cytometry data using the increasingly popular ‘tidy data’ interface. AVAILABILITY AND IMPLEMENTATION: {tidytof} is available at https://github.com/keyes-timothy/tidytof and is released under the MIT license. It is supported on Linux, MS Windows and MacOS. Additional documentation is available at the package website (https://keyes-timothy.github.io/tidytof/). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Advances online.
format Online
Article
Text
id pubmed-10281957
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-102819572023-06-22 tidytof: a user-friendly framework for scalable and reproducible high-dimensional cytometry data analysis Keyes, Timothy J Koladiya, Abhishek Lo, Yu-Chen Nolan, Garry P Davis, Kara L Bioinform Adv Application Note SUMMARY: While many algorithms for analyzing high-dimensional cytometry data have now been developed, the software implementations of these algorithms remain highly customized—this means that exploring a dataset requires users to learn unique, often poorly interoperable package syntaxes for each step of data processing. To solve this problem, we developed {tidytof}, an open-source R package for analyzing high-dimensional cytometry data using the increasingly popular ‘tidy data’ interface. AVAILABILITY AND IMPLEMENTATION: {tidytof} is available at https://github.com/keyes-timothy/tidytof and is released under the MIT license. It is supported on Linux, MS Windows and MacOS. Additional documentation is available at the package website (https://keyes-timothy.github.io/tidytof/). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Advances online. Oxford University Press 2023-06-09 /pmc/articles/PMC10281957/ /pubmed/37351311 http://dx.doi.org/10.1093/bioadv/vbad071 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Application Note
Keyes, Timothy J
Koladiya, Abhishek
Lo, Yu-Chen
Nolan, Garry P
Davis, Kara L
tidytof: a user-friendly framework for scalable and reproducible high-dimensional cytometry data analysis
title tidytof: a user-friendly framework for scalable and reproducible high-dimensional cytometry data analysis
title_full tidytof: a user-friendly framework for scalable and reproducible high-dimensional cytometry data analysis
title_fullStr tidytof: a user-friendly framework for scalable and reproducible high-dimensional cytometry data analysis
title_full_unstemmed tidytof: a user-friendly framework for scalable and reproducible high-dimensional cytometry data analysis
title_short tidytof: a user-friendly framework for scalable and reproducible high-dimensional cytometry data analysis
title_sort tidytof: a user-friendly framework for scalable and reproducible high-dimensional cytometry data analysis
topic Application Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281957/
https://www.ncbi.nlm.nih.gov/pubmed/37351311
http://dx.doi.org/10.1093/bioadv/vbad071
work_keys_str_mv AT keyestimothyj tidytofauserfriendlyframeworkforscalableandreproduciblehighdimensionalcytometrydataanalysis
AT koladiyaabhishek tidytofauserfriendlyframeworkforscalableandreproduciblehighdimensionalcytometrydataanalysis
AT loyuchen tidytofauserfriendlyframeworkforscalableandreproduciblehighdimensionalcytometrydataanalysis
AT nolangarryp tidytofauserfriendlyframeworkforscalableandreproduciblehighdimensionalcytometrydataanalysis
AT daviskaral tidytofauserfriendlyframeworkforscalableandreproduciblehighdimensionalcytometrydataanalysis