Cargando…
tidytof: a user-friendly framework for scalable and reproducible high-dimensional cytometry data analysis
SUMMARY: While many algorithms for analyzing high-dimensional cytometry data have now been developed, the software implementations of these algorithms remain highly customized—this means that exploring a dataset requires users to learn unique, often poorly interoperable package syntaxes for each ste...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281957/ https://www.ncbi.nlm.nih.gov/pubmed/37351311 http://dx.doi.org/10.1093/bioadv/vbad071 |
_version_ | 1785061091649257472 |
---|---|
author | Keyes, Timothy J Koladiya, Abhishek Lo, Yu-Chen Nolan, Garry P Davis, Kara L |
author_facet | Keyes, Timothy J Koladiya, Abhishek Lo, Yu-Chen Nolan, Garry P Davis, Kara L |
author_sort | Keyes, Timothy J |
collection | PubMed |
description | SUMMARY: While many algorithms for analyzing high-dimensional cytometry data have now been developed, the software implementations of these algorithms remain highly customized—this means that exploring a dataset requires users to learn unique, often poorly interoperable package syntaxes for each step of data processing. To solve this problem, we developed {tidytof}, an open-source R package for analyzing high-dimensional cytometry data using the increasingly popular ‘tidy data’ interface. AVAILABILITY AND IMPLEMENTATION: {tidytof} is available at https://github.com/keyes-timothy/tidytof and is released under the MIT license. It is supported on Linux, MS Windows and MacOS. Additional documentation is available at the package website (https://keyes-timothy.github.io/tidytof/). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Advances online. |
format | Online Article Text |
id | pubmed-10281957 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-102819572023-06-22 tidytof: a user-friendly framework for scalable and reproducible high-dimensional cytometry data analysis Keyes, Timothy J Koladiya, Abhishek Lo, Yu-Chen Nolan, Garry P Davis, Kara L Bioinform Adv Application Note SUMMARY: While many algorithms for analyzing high-dimensional cytometry data have now been developed, the software implementations of these algorithms remain highly customized—this means that exploring a dataset requires users to learn unique, often poorly interoperable package syntaxes for each step of data processing. To solve this problem, we developed {tidytof}, an open-source R package for analyzing high-dimensional cytometry data using the increasingly popular ‘tidy data’ interface. AVAILABILITY AND IMPLEMENTATION: {tidytof} is available at https://github.com/keyes-timothy/tidytof and is released under the MIT license. It is supported on Linux, MS Windows and MacOS. Additional documentation is available at the package website (https://keyes-timothy.github.io/tidytof/). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Advances online. Oxford University Press 2023-06-09 /pmc/articles/PMC10281957/ /pubmed/37351311 http://dx.doi.org/10.1093/bioadv/vbad071 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Application Note Keyes, Timothy J Koladiya, Abhishek Lo, Yu-Chen Nolan, Garry P Davis, Kara L tidytof: a user-friendly framework for scalable and reproducible high-dimensional cytometry data analysis |
title | tidytof: a user-friendly framework for scalable and reproducible high-dimensional cytometry data analysis |
title_full | tidytof: a user-friendly framework for scalable and reproducible high-dimensional cytometry data analysis |
title_fullStr | tidytof: a user-friendly framework for scalable and reproducible high-dimensional cytometry data analysis |
title_full_unstemmed | tidytof: a user-friendly framework for scalable and reproducible high-dimensional cytometry data analysis |
title_short | tidytof: a user-friendly framework for scalable and reproducible high-dimensional cytometry data analysis |
title_sort | tidytof: a user-friendly framework for scalable and reproducible high-dimensional cytometry data analysis |
topic | Application Note |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281957/ https://www.ncbi.nlm.nih.gov/pubmed/37351311 http://dx.doi.org/10.1093/bioadv/vbad071 |
work_keys_str_mv | AT keyestimothyj tidytofauserfriendlyframeworkforscalableandreproduciblehighdimensionalcytometrydataanalysis AT koladiyaabhishek tidytofauserfriendlyframeworkforscalableandreproduciblehighdimensionalcytometrydataanalysis AT loyuchen tidytofauserfriendlyframeworkforscalableandreproduciblehighdimensionalcytometrydataanalysis AT nolangarryp tidytofauserfriendlyframeworkforscalableandreproduciblehighdimensionalcytometrydataanalysis AT daviskaral tidytofauserfriendlyframeworkforscalableandreproduciblehighdimensionalcytometrydataanalysis |