Cargando…

Mechanisms of synergistic suppression of ALK-positive lung cancer cell growth by the combination of ALK and SHP2 inhibitors

Lung cancer is a major cause of cancer-related deaths. Alectinib is the first line of treatment for patients with ALK-positive lung cancer, but the survival rate beyond 2–3 years is low. Co-targeting secondary oncogenic drivers such as SHP2 is a potential strategy for improving drug efficacy. This i...

Descripción completa

Detalles Bibliográficos
Autores principales: Berry, M. A., Bland, A. R., Ashton, J. C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281967/
https://www.ncbi.nlm.nih.gov/pubmed/37339995
http://dx.doi.org/10.1038/s41598-023-37006-2
Descripción
Sumario:Lung cancer is a major cause of cancer-related deaths. Alectinib is the first line of treatment for patients with ALK-positive lung cancer, but the survival rate beyond 2–3 years is low. Co-targeting secondary oncogenic drivers such as SHP2 is a potential strategy for improving drug efficacy. This is because SHP2 is expressed ubiquitously, but ALK expression is largely restricted to cancer cells. Thus, the combination of ALK and SHP2 inhibitors may provide a way to restrict synergistic cytotoxicity to cancer cells only, by reducing the dose of SHP2 inhibitors required for anticancer action and minimising SHP2-dependent systemic toxicity. The objective of this study was to investigate whether the combination of a SHP2 inhibitor (SHP099) with alectinib would synergistically suppress the growth of ALK-positive lung cancer cells. Our results demonstrated that the drug combination significantly and synergistically decreased cell viability at relatively low concentrations in ALK-positive H3122 and H2228 cells, due to G1 cell cycle arrest and increased apoptosis because of suppressed downstream RAS/MAPK signalling. The drug combination also induced the expression of mediators of the intrinsic apoptotic pathway, Bim and cleaved caspase-3, and modulated the expression of cell cycle mediators cyclin D1, cyclin B1, and phosphorylated CDK1.