Cargando…
Delineating COVID-19 subgroups using routine clinical data identifies distinct in-hospital outcomes
The COVID-19 pandemic has been a great challenge to healthcare systems worldwide. It highlighted the need for robust predictive models which can be readily deployed to uncover heterogeneities in disease course, aid decision-making and prioritise treatment. We adapted an unsupervised data-driven mode...
Autores principales: | Rangelov, Bojidar, Young, Alexandra, Lilaonitkul, Watjana, Aslani, Shahab, Taylor, Paul, Guðmundsson, Eyjólfur, Yang, Qianye, Hu, Yipeng, Hurst, John R., Hawkes, David J., Jacob, Joseph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10282086/ https://www.ncbi.nlm.nih.gov/pubmed/37339958 http://dx.doi.org/10.1038/s41598-023-32469-9 |
Ejemplares similares
-
Author Correction: Delineating COVID-19 subgroups using routine clinical data identifies distinct in-hospital outcomes
por: Rangelov, Bojidar, et al.
Publicado: (2023) -
Automated airway quantification associates with mortality in idiopathic pulmonary fibrosis
por: Cheung, Wing Keung, et al.
Publicado: (2023) -
Thoracic Imaging at Exacerbation of Chronic Obstructive Pulmonary Disease: A Systematic Review
por: Rangelov, Bojidar A, et al.
Publicado: (2020) -
Clinical deployment environments: Five pillars of translational machine learning for health
por: Harris, Steve, et al.
Publicado: (2022) -
An automated approach to identify scientific publications reporting pharmacokinetic parameters
por: Gonzalez Hernandez, Ferran, et al.
Publicado: (2021)