Cargando…
Automatic Differentiation is no Panacea for Phylogenetic Gradient Computation
Gradients of probabilistic model likelihoods with respect to their parameters are essential for modern computational statistics and machine learning. These calculations are readily available for arbitrary models via “automatic differentiation” implemented in general-purpose machine-learning librarie...
Autores principales: | Fourment, Mathieu, Swanepoel, Christiaan J, Galloway, Jared G, Ji, Xiang, Gangavarapu, Karthik, Suchard, Marc A, Matsen IV, Frederick A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10282121/ https://www.ncbi.nlm.nih.gov/pubmed/37265233 http://dx.doi.org/10.1093/gbe/evad099 |
Ejemplares similares
-
Effective Online Bayesian Phylogenetics via Sequential Monte Carlo with Guided Proposals
por: Fourment, Mathieu, et al.
Publicado: (2018) -
A topology-marginal composite likelihood via a generalized phylogenetic pruning algorithm
por: Jun, Seong-Hwan, et al.
Publicado: (2023) -
Edge Principal Components and Squash Clustering: Using the Special Structure of Phylogenetic Placement Data for Sample Comparison
por: Matsen IV, Frederick A., et al.
Publicado: (2013) -
Correction: Edge Principal Components and Squash Clustering: Using the Special Structure of Phylogenetic Placement Data for Sample Comparison
por: Matsen IV, Frederick A., et al.
Publicado: (2013) -
Online Bayesian Phylogenetic Inference: Theoretical Foundations via Sequential Monte Carlo
por: Dinh, Vu, et al.
Publicado: (2018)