Cargando…
Signal detection models as contextual bandits
Signal detection theory (SDT) has been widely applied to identify the optimal discriminative decisions of receivers under uncertainty. However, the approach assumes that decision-makers immediately adopt the appropriate acceptance threshold, even though the optimal response must often be learned. He...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10282591/ https://www.ncbi.nlm.nih.gov/pubmed/37351497 http://dx.doi.org/10.1098/rsos.230157 |
Sumario: | Signal detection theory (SDT) has been widely applied to identify the optimal discriminative decisions of receivers under uncertainty. However, the approach assumes that decision-makers immediately adopt the appropriate acceptance threshold, even though the optimal response must often be learned. Here we recast the classical normal–normal (and power-law) signal detection model as a contextual multi-armed bandit (CMAB). Thus, rather than starting with complete information, decision-makers must infer how the magnitude of a continuous cue is related to the probability that a signaller is desirable, while simultaneously seeking to exploit the information they acquire. We explain how various CMAB heuristics resolve the trade-off between better estimating the underlying relationship and exploiting it. Next, we determined how naive human volunteers resolve signal detection problems with a continuous cue. As anticipated, a model of choice (accept/reject) that assumed volunteers immediately adopted the SDT-predicted acceptance threshold did not predict volunteer behaviour well. The Softmax rule for solving CMABs, with choices based on a logistic function of the expected payoffs, best explained the decisions of our volunteers but a simple midpoint algorithm also predicted decisions well under some conditions. CMABs offer principled parametric solutions to solving many classical SDT problems when decision-makers start with incomplete information. |
---|