Cargando…
Automated Interpretation of Clinical Electroencephalograms Using Artificial Intelligence
IMPORTANCE: Electroencephalograms (EEGs) are a fundamental evaluation in neurology but require special expertise unavailable in many regions of the world. Artificial intelligence (AI) has a potential for addressing these unmet needs. Previous AI models address only limited aspects of EEG interpretat...
Autores principales: | Tveit, Jesper, Aurlien, Harald, Plis, Sergey, Calhoun, Vince D., Tatum, William O., Schomer, Donald L., Arntsen, Vibeke, Cox, Fieke, Fahoum, Firas, Gallentine, William B., Gardella, Elena, Hahn, Cecil D., Husain, Aatif M., Kessler, Sudha, Kural, Mustafa Aykut, Nascimento, Fábio A., Tankisi, Hatice, Ulvin, Line B., Wennberg, Richard, Beniczky, Sándor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10282956/ https://www.ncbi.nlm.nih.gov/pubmed/37338864 http://dx.doi.org/10.1001/jamaneurol.2023.1645 |
Ejemplares similares
-
Criteria for defining interictal epileptiform discharges in EEG: A clinical validation study
por: Kural, Mustafa Aykut, et al.
Publicado: (2020) -
Duration of epileptic seizure types: A data‐driven approach
por: Meritam Larsen, Pirgit, et al.
Publicado: (2023) -
EEG normal variants: A prospective study using the SCORE system
por: Wüstenhagen, Stephan, et al.
Publicado: (2022) -
Implementing the SCORE system improves the quality of clinical EEG reading
por: Japaridze, Giorgi, et al.
Publicado: (2022) -
NOVEL APPROACH EXPLAINS SPATIO-SPECTRAL INTERACTIONS IN RAW ELECTROENCEPHALOGRAM DEEP LEARNING CLASSIFIERS
por: Ellis, Charles A., et al.
Publicado: (2023)