Cargando…
Aspect-based classification of vaccine misinformation: a spatiotemporal analysis using Twitter chatter
BACKGROUND: The spread of misinformation of all types threatens people’s safety and interrupts resolutions. COVID-19 vaccination has been a widely discussed topic on social media platforms with numerous misleading and fallacious information. This false information has a critical impact on the safety...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283216/ https://www.ncbi.nlm.nih.gov/pubmed/37340455 http://dx.doi.org/10.1186/s12889-023-16067-y |
_version_ | 1785061262527299584 |
---|---|
author | Ismail, Heba Hussein, Nada Elabyad, Rawan Abdelhalim, Salma Elhadef, Mourad |
author_facet | Ismail, Heba Hussein, Nada Elabyad, Rawan Abdelhalim, Salma Elhadef, Mourad |
author_sort | Ismail, Heba |
collection | PubMed |
description | BACKGROUND: The spread of misinformation of all types threatens people’s safety and interrupts resolutions. COVID-19 vaccination has been a widely discussed topic on social media platforms with numerous misleading and fallacious information. This false information has a critical impact on the safety of society as it prevents many people from taking the vaccine, decelerating the world’s ability to go back to normal. Therefore, it is vital to analyze the content shared on social media platforms, detect misinformation, identify aspects of misinformation, and efficiently represent related statistics to combat the spread of misleading information about the vaccine. This paper aims to support stakeholders in decision-making by providing solid and current insights into the spatiotemporal progression of the common misinformation aspects of the various available vaccines. METHODS: Approximately 3800 tweets were annotated into four expert-verified aspects of vaccine misinformation obtained from reliable medical resources. Next, an Aspect-based Misinformation Analysis Framework was designed using the Light Gradient Boosting Machine (LightGBM) model, which is one of the most advanced, fast, and efficient machine learning models to date. Based on this dataset, spatiotemporal statistical analysis was performed to infer insights into the progression of aspects of vaccine misinformation among the public. Finally, the Pearson correlation coefficient and p-values are calculated for the global misinformation count against the vaccination counts of 43 countries from December 2020 until July 2021. RESULTS: The optimized classification per class (i.e., per an aspect of misinformation) accuracy was 87.4%, 92.7%, 80.1%, and 82.5% for the “Vaccine Constituent,” “Adverse Effects,” “Agenda,” “Efficacy and Clinical Trials” aspects, respectively. The model achieved an Area Under the ROC Curve (AUC) of 90.3% and 89.6% for validation and testing, respectively, which indicates the reliability of the proposed framework in detecting aspects of vaccine misinformation on Twitter. The correlation analysis shows that 37% of the countries addressed in this study were negatively affected by the spread of misinformation on Twitter resulting in reduced number of administered vaccines during the same timeframe. CONCLUSIONS: Twitter is a rich source of insight on the progression of vaccine misinformation among the public. Machine Learning models, such as LightGBM, are efficient for multi-class classification and proved reliable in classifying vaccine misinformation aspects even with limited samples in social media datasets. |
format | Online Article Text |
id | pubmed-10283216 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-102832162023-06-22 Aspect-based classification of vaccine misinformation: a spatiotemporal analysis using Twitter chatter Ismail, Heba Hussein, Nada Elabyad, Rawan Abdelhalim, Salma Elhadef, Mourad BMC Public Health Research Article BACKGROUND: The spread of misinformation of all types threatens people’s safety and interrupts resolutions. COVID-19 vaccination has been a widely discussed topic on social media platforms with numerous misleading and fallacious information. This false information has a critical impact on the safety of society as it prevents many people from taking the vaccine, decelerating the world’s ability to go back to normal. Therefore, it is vital to analyze the content shared on social media platforms, detect misinformation, identify aspects of misinformation, and efficiently represent related statistics to combat the spread of misleading information about the vaccine. This paper aims to support stakeholders in decision-making by providing solid and current insights into the spatiotemporal progression of the common misinformation aspects of the various available vaccines. METHODS: Approximately 3800 tweets were annotated into four expert-verified aspects of vaccine misinformation obtained from reliable medical resources. Next, an Aspect-based Misinformation Analysis Framework was designed using the Light Gradient Boosting Machine (LightGBM) model, which is one of the most advanced, fast, and efficient machine learning models to date. Based on this dataset, spatiotemporal statistical analysis was performed to infer insights into the progression of aspects of vaccine misinformation among the public. Finally, the Pearson correlation coefficient and p-values are calculated for the global misinformation count against the vaccination counts of 43 countries from December 2020 until July 2021. RESULTS: The optimized classification per class (i.e., per an aspect of misinformation) accuracy was 87.4%, 92.7%, 80.1%, and 82.5% for the “Vaccine Constituent,” “Adverse Effects,” “Agenda,” “Efficacy and Clinical Trials” aspects, respectively. The model achieved an Area Under the ROC Curve (AUC) of 90.3% and 89.6% for validation and testing, respectively, which indicates the reliability of the proposed framework in detecting aspects of vaccine misinformation on Twitter. The correlation analysis shows that 37% of the countries addressed in this study were negatively affected by the spread of misinformation on Twitter resulting in reduced number of administered vaccines during the same timeframe. CONCLUSIONS: Twitter is a rich source of insight on the progression of vaccine misinformation among the public. Machine Learning models, such as LightGBM, are efficient for multi-class classification and proved reliable in classifying vaccine misinformation aspects even with limited samples in social media datasets. BioMed Central 2023-06-21 /pmc/articles/PMC10283216/ /pubmed/37340455 http://dx.doi.org/10.1186/s12889-023-16067-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Ismail, Heba Hussein, Nada Elabyad, Rawan Abdelhalim, Salma Elhadef, Mourad Aspect-based classification of vaccine misinformation: a spatiotemporal analysis using Twitter chatter |
title | Aspect-based classification of vaccine misinformation: a spatiotemporal analysis using Twitter chatter |
title_full | Aspect-based classification of vaccine misinformation: a spatiotemporal analysis using Twitter chatter |
title_fullStr | Aspect-based classification of vaccine misinformation: a spatiotemporal analysis using Twitter chatter |
title_full_unstemmed | Aspect-based classification of vaccine misinformation: a spatiotemporal analysis using Twitter chatter |
title_short | Aspect-based classification of vaccine misinformation: a spatiotemporal analysis using Twitter chatter |
title_sort | aspect-based classification of vaccine misinformation: a spatiotemporal analysis using twitter chatter |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283216/ https://www.ncbi.nlm.nih.gov/pubmed/37340455 http://dx.doi.org/10.1186/s12889-023-16067-y |
work_keys_str_mv | AT ismailheba aspectbasedclassificationofvaccinemisinformationaspatiotemporalanalysisusingtwitterchatter AT husseinnada aspectbasedclassificationofvaccinemisinformationaspatiotemporalanalysisusingtwitterchatter AT elabyadrawan aspectbasedclassificationofvaccinemisinformationaspatiotemporalanalysisusingtwitterchatter AT abdelhalimsalma aspectbasedclassificationofvaccinemisinformationaspatiotemporalanalysisusingtwitterchatter AT elhadefmourad aspectbasedclassificationofvaccinemisinformationaspatiotemporalanalysisusingtwitterchatter |