Cargando…
The effect of LED light quality on the carotenoid metabolism and related gene expression in the genus Brassica
BACKGROUND: New vegetable production systems, such as vertical farming, but also well-established in-door production methods led to the implementation of light emitting diodes (LEDs). LEDs are the most important light sources in modern indoor-production systems and offer the possibility for enhancin...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283245/ https://www.ncbi.nlm.nih.gov/pubmed/37340342 http://dx.doi.org/10.1186/s12870-023-04326-4 |
Sumario: | BACKGROUND: New vegetable production systems, such as vertical farming, but also well-established in-door production methods led to the implementation of light emitting diodes (LEDs). LEDs are the most important light sources in modern indoor-production systems and offer the possibility for enhancing growth and specific metabolites in planta. Even though the number of studies investigating the effects of LED lighting on vegetable quality has increased, the knowledge about genus variability is limited. In the present study, the effect of different LED spectra on the metabolic and transcriptional level of the carotenoid metabolism in five different Brassica sprouts was investigated. Cruciferous vegetables are one of the main food crops worldwide. Pak choi (Brassica rapa ssp. chinensis), cauliflower (Brassica oleracea var. botrytis), Chinese cabbage (Brassica rapa ssp. pekinensis), green kale (Brassica oleracea ssp. sabellica) and turnip cabbage (Brassica oleracea spp. gongylodes) sprouts were grown under a combination of blue & white LEDs, red & white LEDs or only white LEDs to elucidate the genus-specific carotenoid metabolism. RESULTS: Genus-specific changes in plant weight and on the photosynthetic pigment levels as well as transcript levels have been detected. Interestingly, the transcript levels of the three investigated carotenoid biosynthesis genes phytoene synthase (PSY), β-cyclase (βLCY) and β-carotene hydroxylase (βOHASE1) were increased under the combination of blue & white LEDs in the majority of the Brassica sprouts. However, only in pak choi, the combination of blue & white LEDs enhanced the carotenoid levels by 14% in comparison to only white LEDs and by ~ 19% in comparison to red & white LEDs. CONCLUSIONS: The effects of light quality differ within a genus which leads to the conclusion that production strategies have to be developed for individual species and cultivars to fully benefit from LED technology. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-023-04326-4. |
---|