Cargando…
RNA-targeted small-molecule drug discoveries: a machine-learning perspective
In the past two decades, machine learning (ML) has been extensively adopted in protein-targeted small molecule (SM) discovery. Once trained, ML models could exert their predicting abilities on large volumes of molecules within a short time. However, applying ML approaches to discover RNA-targeted SM...
Autores principales: | Xiao, Huan, Yang, Xin, Zhang, Yihao, Zhang, Zongkang, Zhang, Ge, Zhang, Bao-Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283424/ https://www.ncbi.nlm.nih.gov/pubmed/37337437 http://dx.doi.org/10.1080/15476286.2023.2223498 |
Ejemplares similares
-
Drug Discovery of DKK1 Inhibitors
por: Jiang, Hewen, et al.
Publicado: (2022) -
A Loop‐Based and AGO‐Incorporated Virtual Screening Model Targeting AGO‐Mediated miRNA–mRNA Interactions for Drug Discovery to Rescue Bone Phenotype in Genetically Modified Mice
por: Zhuo, Zhenjian, et al.
Publicado: (2020) -
A Machine Learning Strategy for Drug Discovery Identifies
Anti-Schistosomal Small Molecules
por: Zorn, Kimberley M., et al.
Publicado: (2021) -
Drug discovery of sclerostin inhibitors
por: Yu, Sifan, et al.
Publicado: (2022) -
Macrocyclization of linear molecules by deep learning to facilitate macrocyclic drug candidates discovery
por: Diao, Yanyan, et al.
Publicado: (2023)