Cargando…

Electron transparent nanotubes reveal crystallization pathways in confinement

The cylindrical pores of track-etched membranes offer excellent environments for studying the effects of confinement on crystallization as the pore diameter is readily varied and the anisotropic morphologies can direct crystal orientation. However, the inability to image individual crystals in situ...

Descripción completa

Detalles Bibliográficos
Autores principales: Galloway, Johanna M., Aslam, Zabeada P., Yeandel, Stephen R., Kulak, Alexander, Ilett, Martha A., Kim, Yi-Yeoun, Bejarano-Villafuerte, Angela, Pokroy, Boaz, Drummond-Brydson, Rik M., Freeman, Colin L., Harding, John H., Kapur, Nikil, Meldrum, Fiona C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283488/
https://www.ncbi.nlm.nih.gov/pubmed/37350829
http://dx.doi.org/10.1039/d3sc00869j
_version_ 1785061317540839424
author Galloway, Johanna M.
Aslam, Zabeada P.
Yeandel, Stephen R.
Kulak, Alexander
Ilett, Martha A.
Kim, Yi-Yeoun
Bejarano-Villafuerte, Angela
Pokroy, Boaz
Drummond-Brydson, Rik M.
Freeman, Colin L.
Harding, John H.
Kapur, Nikil
Meldrum, Fiona C.
author_facet Galloway, Johanna M.
Aslam, Zabeada P.
Yeandel, Stephen R.
Kulak, Alexander
Ilett, Martha A.
Kim, Yi-Yeoun
Bejarano-Villafuerte, Angela
Pokroy, Boaz
Drummond-Brydson, Rik M.
Freeman, Colin L.
Harding, John H.
Kapur, Nikil
Meldrum, Fiona C.
author_sort Galloway, Johanna M.
collection PubMed
description The cylindrical pores of track-etched membranes offer excellent environments for studying the effects of confinement on crystallization as the pore diameter is readily varied and the anisotropic morphologies can direct crystal orientation. However, the inability to image individual crystals in situ within the pores in this system has prevented many of the underlying mechanisms from being characterized. Here, we study the crystallization of calcium sulfate within track-etched membranes and reveal that oriented gypsum forms in 200 nm diameter pores, bassanite in 25–100 nm pores and anhydrite in 10 nm pores. The crystallization pathways are then studied by coating the membranes with an amorphous titania layer prior to mineralization to create electron transparent nanotubes that protect fragile precursor materials. By visualizing the evolutionary pathways of the crystals within the pores we show that the product single crystals derive from multiple nucleation events and that orientation is determined at early reaction times. Finally, the transformation of bassanite to gypsum within the membrane pores is studied using experiment and potential mean force calculations and is shown to proceed by localized dissolution/reprecipitation. This work provides insight into the effects of confinement on crystallization processes, which is relevant to mineral formation in many real-world environments.
format Online
Article
Text
id pubmed-10283488
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-102834882023-06-22 Electron transparent nanotubes reveal crystallization pathways in confinement Galloway, Johanna M. Aslam, Zabeada P. Yeandel, Stephen R. Kulak, Alexander Ilett, Martha A. Kim, Yi-Yeoun Bejarano-Villafuerte, Angela Pokroy, Boaz Drummond-Brydson, Rik M. Freeman, Colin L. Harding, John H. Kapur, Nikil Meldrum, Fiona C. Chem Sci Chemistry The cylindrical pores of track-etched membranes offer excellent environments for studying the effects of confinement on crystallization as the pore diameter is readily varied and the anisotropic morphologies can direct crystal orientation. However, the inability to image individual crystals in situ within the pores in this system has prevented many of the underlying mechanisms from being characterized. Here, we study the crystallization of calcium sulfate within track-etched membranes and reveal that oriented gypsum forms in 200 nm diameter pores, bassanite in 25–100 nm pores and anhydrite in 10 nm pores. The crystallization pathways are then studied by coating the membranes with an amorphous titania layer prior to mineralization to create electron transparent nanotubes that protect fragile precursor materials. By visualizing the evolutionary pathways of the crystals within the pores we show that the product single crystals derive from multiple nucleation events and that orientation is determined at early reaction times. Finally, the transformation of bassanite to gypsum within the membrane pores is studied using experiment and potential mean force calculations and is shown to proceed by localized dissolution/reprecipitation. This work provides insight into the effects of confinement on crystallization processes, which is relevant to mineral formation in many real-world environments. The Royal Society of Chemistry 2023-05-30 /pmc/articles/PMC10283488/ /pubmed/37350829 http://dx.doi.org/10.1039/d3sc00869j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Galloway, Johanna M.
Aslam, Zabeada P.
Yeandel, Stephen R.
Kulak, Alexander
Ilett, Martha A.
Kim, Yi-Yeoun
Bejarano-Villafuerte, Angela
Pokroy, Boaz
Drummond-Brydson, Rik M.
Freeman, Colin L.
Harding, John H.
Kapur, Nikil
Meldrum, Fiona C.
Electron transparent nanotubes reveal crystallization pathways in confinement
title Electron transparent nanotubes reveal crystallization pathways in confinement
title_full Electron transparent nanotubes reveal crystallization pathways in confinement
title_fullStr Electron transparent nanotubes reveal crystallization pathways in confinement
title_full_unstemmed Electron transparent nanotubes reveal crystallization pathways in confinement
title_short Electron transparent nanotubes reveal crystallization pathways in confinement
title_sort electron transparent nanotubes reveal crystallization pathways in confinement
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283488/
https://www.ncbi.nlm.nih.gov/pubmed/37350829
http://dx.doi.org/10.1039/d3sc00869j
work_keys_str_mv AT gallowayjohannam electrontransparentnanotubesrevealcrystallizationpathwaysinconfinement
AT aslamzabeadap electrontransparentnanotubesrevealcrystallizationpathwaysinconfinement
AT yeandelstephenr electrontransparentnanotubesrevealcrystallizationpathwaysinconfinement
AT kulakalexander electrontransparentnanotubesrevealcrystallizationpathwaysinconfinement
AT ilettmarthaa electrontransparentnanotubesrevealcrystallizationpathwaysinconfinement
AT kimyiyeoun electrontransparentnanotubesrevealcrystallizationpathwaysinconfinement
AT bejaranovillafuerteangela electrontransparentnanotubesrevealcrystallizationpathwaysinconfinement
AT pokroyboaz electrontransparentnanotubesrevealcrystallizationpathwaysinconfinement
AT drummondbrydsonrikm electrontransparentnanotubesrevealcrystallizationpathwaysinconfinement
AT freemancolinl electrontransparentnanotubesrevealcrystallizationpathwaysinconfinement
AT hardingjohnh electrontransparentnanotubesrevealcrystallizationpathwaysinconfinement
AT kapurnikil electrontransparentnanotubesrevealcrystallizationpathwaysinconfinement
AT meldrumfionac electrontransparentnanotubesrevealcrystallizationpathwaysinconfinement