Cargando…
Dynamic covalent self-assembly and self-sorting processes in the formation of imine-based macrocycles and macrobicyclic cages
Investigating the self-assembly and self-sorting behaviour of dynamic covalent organic architectures makes possible the parallel generation of multiple discrete products in a single one pot procedure. We here report the self-assembly of covalent organic macrocycles and macrobicyclic cages from diald...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10284075/ https://www.ncbi.nlm.nih.gov/pubmed/37350816 http://dx.doi.org/10.1039/d3sc01174g |
_version_ | 1785061330214977536 |
---|---|
author | Yang, Zhaozheng Esteve, Ferran Antheaume, Cyril Lehn, Jean-Marie |
author_facet | Yang, Zhaozheng Esteve, Ferran Antheaume, Cyril Lehn, Jean-Marie |
author_sort | Yang, Zhaozheng |
collection | PubMed |
description | Investigating the self-assembly and self-sorting behaviour of dynamic covalent organic architectures makes possible the parallel generation of multiple discrete products in a single one pot procedure. We here report the self-assembly of covalent organic macrocycles and macrobicyclic cages from dialdehyde and polyamine components via multiple [2 + 2] and [3 + 2] polyimine condensations. Furthermore, component self-sorting processes have been monitored within the dynamic covalent libraries formed by these macrocycles and macrobicyclic cages. The progressive assembly of the final structures involves intermediates which undergo component selection and self-correction to generate the final thermodynamic constituents. The homo-self-sorting observed seems to involve entropic factors, as the homoleptic species present a higher symmetry than the competing heteroleptic ones. This study not only emphasizes the importance of an adequate design of the components of complex self-sorting systems, but also verifies the conjecture that systems of higher complexity may generate simpler outputs through the operation of competitive self-sorting. |
format | Online Article Text |
id | pubmed-10284075 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-102840752023-06-22 Dynamic covalent self-assembly and self-sorting processes in the formation of imine-based macrocycles and macrobicyclic cages Yang, Zhaozheng Esteve, Ferran Antheaume, Cyril Lehn, Jean-Marie Chem Sci Chemistry Investigating the self-assembly and self-sorting behaviour of dynamic covalent organic architectures makes possible the parallel generation of multiple discrete products in a single one pot procedure. We here report the self-assembly of covalent organic macrocycles and macrobicyclic cages from dialdehyde and polyamine components via multiple [2 + 2] and [3 + 2] polyimine condensations. Furthermore, component self-sorting processes have been monitored within the dynamic covalent libraries formed by these macrocycles and macrobicyclic cages. The progressive assembly of the final structures involves intermediates which undergo component selection and self-correction to generate the final thermodynamic constituents. The homo-self-sorting observed seems to involve entropic factors, as the homoleptic species present a higher symmetry than the competing heteroleptic ones. This study not only emphasizes the importance of an adequate design of the components of complex self-sorting systems, but also verifies the conjecture that systems of higher complexity may generate simpler outputs through the operation of competitive self-sorting. The Royal Society of Chemistry 2023-06-02 /pmc/articles/PMC10284075/ /pubmed/37350816 http://dx.doi.org/10.1039/d3sc01174g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Yang, Zhaozheng Esteve, Ferran Antheaume, Cyril Lehn, Jean-Marie Dynamic covalent self-assembly and self-sorting processes in the formation of imine-based macrocycles and macrobicyclic cages |
title | Dynamic covalent self-assembly and self-sorting processes in the formation of imine-based macrocycles and macrobicyclic cages |
title_full | Dynamic covalent self-assembly and self-sorting processes in the formation of imine-based macrocycles and macrobicyclic cages |
title_fullStr | Dynamic covalent self-assembly and self-sorting processes in the formation of imine-based macrocycles and macrobicyclic cages |
title_full_unstemmed | Dynamic covalent self-assembly and self-sorting processes in the formation of imine-based macrocycles and macrobicyclic cages |
title_short | Dynamic covalent self-assembly and self-sorting processes in the formation of imine-based macrocycles and macrobicyclic cages |
title_sort | dynamic covalent self-assembly and self-sorting processes in the formation of imine-based macrocycles and macrobicyclic cages |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10284075/ https://www.ncbi.nlm.nih.gov/pubmed/37350816 http://dx.doi.org/10.1039/d3sc01174g |
work_keys_str_mv | AT yangzhaozheng dynamiccovalentselfassemblyandselfsortingprocessesintheformationofiminebasedmacrocyclesandmacrobicycliccages AT esteveferran dynamiccovalentselfassemblyandselfsortingprocessesintheformationofiminebasedmacrocyclesandmacrobicycliccages AT antheaumecyril dynamiccovalentselfassemblyandselfsortingprocessesintheformationofiminebasedmacrocyclesandmacrobicycliccages AT lehnjeanmarie dynamiccovalentselfassemblyandselfsortingprocessesintheformationofiminebasedmacrocyclesandmacrobicycliccages |