Cargando…
Urtica dioica (Gazaneh) distillate restores glucose metabolism in diabetic rats
BACKGROUND: Diabetes has become an important health problem in the world. Natural agents, with antidiabetic property, are potential candidates for improving diabetes. Urtica Dioica Distillate (UDD) or Araghe Gazaneh is widely used for the treatment of diabetes as per traditional medicine. Despite th...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10284253/ https://www.ncbi.nlm.nih.gov/pubmed/37351057 http://dx.doi.org/10.4103/ijpvm.ijpvm_293_21 |
Sumario: | BACKGROUND: Diabetes has become an important health problem in the world. Natural agents, with antidiabetic property, are potential candidates for improving diabetes. Urtica Dioica Distillate (UDD) or Araghe Gazaneh is widely used for the treatment of diabetes as per traditional medicine. Despite the tremendous use of UDD as an antidiabetic compound in folk medicine, the antidiabetic effects of UDD has been neglected by medical scientists. In this study, we aimed to evaluate the effects of UDD on the glucose metabolism in diabetic rats. METHODS: A total of 24 male rats were divided equally into four groups, two treatment and two control groups, each containing normal or Streptozotocin (STZ)–induced diabetic rats. During 4 weeks, control and treatment rats received water or UDD, respectively. Fasting blood sugar (FBS), HbA1c, serum creatinine, blood urea nitrogen, and specific activities of hepatic enzymes including glucokinase (GK), hexokinase (HK), glucose-6-phosphate dehydrogenase (G6PD), and muscle glucose transporter type 4 (GLUT4) and liver phosphoenolpyruvate carboxykinase (PEPCK) mRNA levels were measured. RESULTS: FBS and HbA1c increased in diabetic groups. Treatment with UDD significantly lowered FBS and prevented weight loss. Decreased FBS level was associated with higher activity levels of GK and HK in UDD-treated diabetic rats. G6PD-specific activity decreased in diabetic control rats compared to nondiabetic ones, but UDD treatment improved it to the normal levels. A significant decrease in the expression level of GLUT4 was observed in diabetic control rats compared to nondiabetic ones, but UDD increased it to the normal levels. CONCLUSIONS: These findings suggest that UDD might exert therapeutic effects against diabetes by improving glucose metabolism and can be used as an alternative or complementary medicine for the treatment of diabetic patients. |
---|