Cargando…
The host phylogeny determines viral infectivity and replication across Staphylococcus host species
Virus host shifts, where a virus transmits to and infects a novel host species, are a major source of emerging infectious disease. Genetic similarity between eukaryotic host species has been shown to be an important determinant of the outcome of virus host shifts, but it is unclear if this is the ca...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10284401/ https://www.ncbi.nlm.nih.gov/pubmed/37289828 http://dx.doi.org/10.1371/journal.ppat.1011433 |
_version_ | 1785061393702060032 |
---|---|
author | Walsh, Sarah K. Imrie, Ryan M. Matuszewska, Marta Paterson, Gavin K. Weinert, Lucy A. Hadfield, Jarrod D. Buckling, Angus Longdon, Ben |
author_facet | Walsh, Sarah K. Imrie, Ryan M. Matuszewska, Marta Paterson, Gavin K. Weinert, Lucy A. Hadfield, Jarrod D. Buckling, Angus Longdon, Ben |
author_sort | Walsh, Sarah K. |
collection | PubMed |
description | Virus host shifts, where a virus transmits to and infects a novel host species, are a major source of emerging infectious disease. Genetic similarity between eukaryotic host species has been shown to be an important determinant of the outcome of virus host shifts, but it is unclear if this is the case for prokaryotes where anti-virus defences can be transmitted by horizontal gene transfer and evolve rapidly. Here, we measure the susceptibility of 64 strains of Staphylococcaceae bacteria (48 strains of Staphylococcus aureus and 16 non-S. aureus species spanning 2 genera) to the bacteriophage ISP, which is currently under investigation for use in phage therapy. Using three methods–plaque assays, optical density (OD) assays, and quantitative (q)PCR–we find that the host phylogeny explains a large proportion of the variation in susceptibility to ISP across the host panel. These patterns were consistent in models of only S. aureus strains and models with a single representative from each Staphylococcaceae species, suggesting that these phylogenetic effects are conserved both within and among host species. We find positive correlations between susceptibility assessed using OD and qPCR and variable correlations between plaque assays and either OD or qPCR, suggesting that plaque assays alone may be inadequate to assess host range. Furthermore, we demonstrate that the phylogenetic relationships between bacterial hosts can generally be used to predict the susceptibility of bacterial strains to phage infection when the susceptibility of closely related hosts is known, although this approach produced large prediction errors in multiple strains where phylogeny was uninformative. Together, our results demonstrate the ability of bacterial host evolutionary relatedness to explain differences in susceptibility to phage infection, with implications for the development of ISP both as a phage therapy treatment and as an experimental system for the study of virus host shifts. |
format | Online Article Text |
id | pubmed-10284401 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-102844012023-06-22 The host phylogeny determines viral infectivity and replication across Staphylococcus host species Walsh, Sarah K. Imrie, Ryan M. Matuszewska, Marta Paterson, Gavin K. Weinert, Lucy A. Hadfield, Jarrod D. Buckling, Angus Longdon, Ben PLoS Pathog Research Article Virus host shifts, where a virus transmits to and infects a novel host species, are a major source of emerging infectious disease. Genetic similarity between eukaryotic host species has been shown to be an important determinant of the outcome of virus host shifts, but it is unclear if this is the case for prokaryotes where anti-virus defences can be transmitted by horizontal gene transfer and evolve rapidly. Here, we measure the susceptibility of 64 strains of Staphylococcaceae bacteria (48 strains of Staphylococcus aureus and 16 non-S. aureus species spanning 2 genera) to the bacteriophage ISP, which is currently under investigation for use in phage therapy. Using three methods–plaque assays, optical density (OD) assays, and quantitative (q)PCR–we find that the host phylogeny explains a large proportion of the variation in susceptibility to ISP across the host panel. These patterns were consistent in models of only S. aureus strains and models with a single representative from each Staphylococcaceae species, suggesting that these phylogenetic effects are conserved both within and among host species. We find positive correlations between susceptibility assessed using OD and qPCR and variable correlations between plaque assays and either OD or qPCR, suggesting that plaque assays alone may be inadequate to assess host range. Furthermore, we demonstrate that the phylogenetic relationships between bacterial hosts can generally be used to predict the susceptibility of bacterial strains to phage infection when the susceptibility of closely related hosts is known, although this approach produced large prediction errors in multiple strains where phylogeny was uninformative. Together, our results demonstrate the ability of bacterial host evolutionary relatedness to explain differences in susceptibility to phage infection, with implications for the development of ISP both as a phage therapy treatment and as an experimental system for the study of virus host shifts. Public Library of Science 2023-06-08 /pmc/articles/PMC10284401/ /pubmed/37289828 http://dx.doi.org/10.1371/journal.ppat.1011433 Text en © 2023 Walsh et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Walsh, Sarah K. Imrie, Ryan M. Matuszewska, Marta Paterson, Gavin K. Weinert, Lucy A. Hadfield, Jarrod D. Buckling, Angus Longdon, Ben The host phylogeny determines viral infectivity and replication across Staphylococcus host species |
title | The host phylogeny determines viral infectivity and replication across Staphylococcus host species |
title_full | The host phylogeny determines viral infectivity and replication across Staphylococcus host species |
title_fullStr | The host phylogeny determines viral infectivity and replication across Staphylococcus host species |
title_full_unstemmed | The host phylogeny determines viral infectivity and replication across Staphylococcus host species |
title_short | The host phylogeny determines viral infectivity and replication across Staphylococcus host species |
title_sort | host phylogeny determines viral infectivity and replication across staphylococcus host species |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10284401/ https://www.ncbi.nlm.nih.gov/pubmed/37289828 http://dx.doi.org/10.1371/journal.ppat.1011433 |
work_keys_str_mv | AT walshsarahk thehostphylogenydeterminesviralinfectivityandreplicationacrossstaphylococcushostspecies AT imrieryanm thehostphylogenydeterminesviralinfectivityandreplicationacrossstaphylococcushostspecies AT matuszewskamarta thehostphylogenydeterminesviralinfectivityandreplicationacrossstaphylococcushostspecies AT patersongavink thehostphylogenydeterminesviralinfectivityandreplicationacrossstaphylococcushostspecies AT weinertlucya thehostphylogenydeterminesviralinfectivityandreplicationacrossstaphylococcushostspecies AT hadfieldjarrodd thehostphylogenydeterminesviralinfectivityandreplicationacrossstaphylococcushostspecies AT bucklingangus thehostphylogenydeterminesviralinfectivityandreplicationacrossstaphylococcushostspecies AT longdonben thehostphylogenydeterminesviralinfectivityandreplicationacrossstaphylococcushostspecies AT walshsarahk hostphylogenydeterminesviralinfectivityandreplicationacrossstaphylococcushostspecies AT imrieryanm hostphylogenydeterminesviralinfectivityandreplicationacrossstaphylococcushostspecies AT matuszewskamarta hostphylogenydeterminesviralinfectivityandreplicationacrossstaphylococcushostspecies AT patersongavink hostphylogenydeterminesviralinfectivityandreplicationacrossstaphylococcushostspecies AT weinertlucya hostphylogenydeterminesviralinfectivityandreplicationacrossstaphylococcushostspecies AT hadfieldjarrodd hostphylogenydeterminesviralinfectivityandreplicationacrossstaphylococcushostspecies AT bucklingangus hostphylogenydeterminesviralinfectivityandreplicationacrossstaphylococcushostspecies AT longdonben hostphylogenydeterminesviralinfectivityandreplicationacrossstaphylococcushostspecies |