Cargando…
LongDat: an R package for covariate-sensitive longitudinal analysis of high-dimensional data
SUMMARY: We introduce LongDat, an R package that analyzes longitudinal multivariable (cohort) data while simultaneously accounting for a potentially large number of covariates. The primary use case is to differentiate direct from indirect effects of an intervention (or treatment) and to identify cov...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10284677/ https://www.ncbi.nlm.nih.gov/pubmed/37359720 http://dx.doi.org/10.1093/bioadv/vbad063 |
Sumario: | SUMMARY: We introduce LongDat, an R package that analyzes longitudinal multivariable (cohort) data while simultaneously accounting for a potentially large number of covariates. The primary use case is to differentiate direct from indirect effects of an intervention (or treatment) and to identify covariates (potential mechanistic intermediates) in longitudinal data. LongDat focuses on analyzing longitudinal microbiome data, but its usage can be expanded to other data types, such as binary, categorical and continuous data. We tested and compared LongDat with other tools (i.e. MaAsLin2, ANCOM, lgpr and ZIBR) on both simulated and real data. We showed that LongDat outperformed these tools in accuracy, runtime and memory cost, especially when there were multiple covariates. The results indicate that the LongDat R package is a computationally efficient and low-memory-cost tool for longitudinal data with multiple covariates and facilitates robust biomarker searches in high-dimensional datasets. AVAILABILITY AND IMPLEMENTATION: The R package LongDat is available on CRAN (https://cran.r-project.org/web/packages/LongDat/) and GitHub (https://github.com/CCY-dev/LongDat). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Advances online. |
---|