Cargando…
A prediction model for childhood obesity risk using the machine learning method: a panel study on Korean children
Young children are increasingly exposed to an obesogenic environment through increased intake of processed food and decreased physical activity. Mothers’ perceptions of obesity and parenting styles influence children’s abilities to maintain a healthy weight. This study developed a prediction model f...
Autores principales: | Lim, Heemoon, Lee, Hyejung, Kim, Joungyoun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10284805/ https://www.ncbi.nlm.nih.gov/pubmed/37344518 http://dx.doi.org/10.1038/s41598-023-37171-4 |
Ejemplares similares
-
Machine Learning Models to Predict Childhood and Adolescent Obesity: A Review
por: Colmenarejo, Gonzalo
Publicado: (2020) -
Effect of metabolic health and obesity on all-cause death and CVD incidence in Korean adults: a retrospective cohort study
por: Kim, Ye-Seul, et al.
Publicado: (2023) -
Author Correction: Effect of metabolic health and obesity on all-cause death and CVD incidence in Korean adults: a retrospective cohort study
por: Kim, Ye-Seul, et al.
Publicado: (2023) -
Industry-HEP panel on Machine Learning
por: CERN. Geneva
Publicado: (2017) -
A Machine-Learning-Based Robust Classification Method for PV Panel Faults
por: Memon, Sufyan Ali, et al.
Publicado: (2022)