Cargando…
Explainable AI via learning to optimize
Indecipherable black boxes are common in machine learning (ML), but applications increasingly require explainable artificial intelligence (XAI). The core of XAI is to establish transparent and interpretable data-driven algorithms. This work provides concrete tools for XAI in situations where prior k...
Autores principales: | Heaton, Howard, Fung, Samy Wu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10284861/ https://www.ncbi.nlm.nih.gov/pubmed/37344533 http://dx.doi.org/10.1038/s41598-023-36249-3 |
Ejemplares similares
-
Explainable AI
por: Samek, Wojciech, et al.
Publicado: (2019) -
A Hamilton–Jacobi-based proximal operator
por: Osher, Stanley, et al.
Publicado: (2023) -
Explainable AI: A Review of Machine Learning Interpretability Methods
por: Linardatos, Pantelis, et al.
Publicado: (2020) -
Diabetes prediction using machine learning and explainable AI techniques
por: Tasin, Isfafuzzaman, et al.
Publicado: (2022) -
Medical Informatics and Explainable AI
por: Aliyev, Taghi
Publicado: (2019)