Cargando…
Artificial intelligence driven design of catalysts and materials for ring opening polymerization using a domain-specific language
Advances in machine learning (ML) and automated experimentation are poised to vastly accelerate research in polymer science. Data representation is a critical aspect for enabling ML integration in research workflows, yet many data models impose significant rigidity making it difficult to accommodate...
Autores principales: | Park, Nathaniel H., Manica, Matteo, Born, Jannis, Hedrick, James L., Erdmann, Tim, Zubarev, Dmitry Yu., Adell-Mill, Nil, Arrechea, Pedro L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10284867/ https://www.ncbi.nlm.nih.gov/pubmed/37344485 http://dx.doi.org/10.1038/s41467-023-39396-3 |
Ejemplares similares
-
Author Correction: Artificial intelligence driven design of catalysts and materials for ring opening polymerization using a domain-specific language
por: Park, Nathaniel H., et al.
Publicado: (2023) -
Living Ring-Opening Polymerization of O-Carboxyanhydrides: The Search for Catalysts
por: Zhong, Yongliang, et al.
Publicado: (2018) -
Editorial: Advanced Catalysts in Ring-Opening Polymerization of Cyclic Esters
por: Wu, Jincai, et al.
Publicado: (2019) -
Supported Catalysts Useful in Ring-Closing Metathesis, Cross Metathesis, and Ring-Opening Metathesis Polymerization
por: Suriboot, Jakkrit, et al.
Publicado: (2016) -
Ring-Opening Polymerization of 1,3-Benzoxazines via Borane Catalyst
por: Arslan, Mustafa, et al.
Publicado: (2018)