Cargando…
Biomolecular condensates – extant relics or evolving microcompartments?
Unprecedented discoveries during the past decade have unearthed the ubiquitous presence of biomolecular condensates (BCs) in diverse organisms and their involvement in a plethora of biological functions. A predominant number of BCs involve coacervation of RNA and proteins that demix from homogenous...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10284869/ https://www.ncbi.nlm.nih.gov/pubmed/37344557 http://dx.doi.org/10.1038/s42003-023-04963-3 |
Sumario: | Unprecedented discoveries during the past decade have unearthed the ubiquitous presence of biomolecular condensates (BCs) in diverse organisms and their involvement in a plethora of biological functions. A predominant number of BCs involve coacervation of RNA and proteins that demix from homogenous solutions by a process of phase separation well described by liquid-liquid phase separation (LLPS), which results in a phase with higher concentration and density from the bulk solution. BCs provide a simple and effective means to achieve reversible spatiotemporal control of cellular processes and adaptation to environmental stimuli in an energy-independent manner. The journey into the past of this phenomenon provides clues to the evolutionary origins of life itself. Here I assemble some current and historic discoveries on LLPS to contemplate whether BCs are extant biological hubs or evolving microcompartments. I conclude that BCs in biology could be extant as a phenomenon but are co-evolving as functionally and compositionally complex microcompartments in cells alongside the membrane-bound organelles. |
---|