Cargando…
Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes
Predicting failure in solids has broad applications including earthquake prediction which remains an unattainable goal. However, recent machine learning work shows that laboratory earthquakes can be predicted using micro-failure events and temporal evolution of fault zone elastic properties. Remarka...
Autores principales: | Borate, Prabhav, Rivière, Jacques, Marone, Chris, Mali, Ankur, Kifer, Daniel, Shokouhi, Parisa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10284922/ https://www.ncbi.nlm.nih.gov/pubmed/37344479 http://dx.doi.org/10.1038/s41467-023-39377-6 |
Ejemplares similares
-
Machine Learning Predicts the Timing and Shear Stress Evolution of Lab Earthquakes Using Active Seismic Monitoring of Fault Zone Processes
por: Shreedharan, Srisharan, et al.
Publicado: (2021) -
The High‐Frequency Signature of Slow and Fast Laboratory Earthquakes
por: Bolton, David C., et al.
Publicado: (2022) -
Acoustic Energy Release During the Laboratory Seismic Cycle: Insights on Laboratory Earthquake Precursors and Prediction
por: Bolton, David C., et al.
Publicado: (2020) -
Surface faulting earthquake clustering controlled by fault and shear-zone interactions
por: Mildon, Zoë K., et al.
Publicado: (2022) -
Stress loading history of earthquake faults influenced by fault/shear zone geometry and Coulomb pre-stress
por: Sgambato, Claudia, et al.
Publicado: (2020)