Cargando…
Unsupervised out-of-distribution detection for safer robotically guided retinal microsurgery
PURPOSE: A fundamental problem in designing safe machine learning systems is identifying when samples presented to a deployed model differ from those observed at training time. Detecting so-called out-of-distribution (OoD) samples is crucial in safety-critical applications such as robotically guided...
Autores principales: | Jungo, Alain, Doorenbos, Lars, Da Col, Tommaso, Beelen, Maarten, Zinkernagel, Martin, Márquez-Neila, Pablo, Sznitman, Raphael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10285003/ https://www.ncbi.nlm.nih.gov/pubmed/37133678 http://dx.doi.org/10.1007/s11548-023-02909-y |
Ejemplares similares
-
Assessment of patient specific information in the wild on fundus photography and optical coherence tomography
por: Munk, Marion R., et al.
Publicado: (2021) -
Predicting OCT biological marker localization from weak annotations
por: Tejero, Javier Gamazo, et al.
Publicado: (2023) -
Expert-level Automated Biomarker Identification in Optical Coherence Tomography Scans
por: Kurmann, Thomas, et al.
Publicado: (2019) -
Robotic microsurgery
por: Liverneaux, Philippe
Publicado: (2015) -
Microfasciectomy in Dupuytren’s disease: microsurgery in the evolution toward safer and more efficient fasciectomy and hand surgery
por: Degreef, Ilse, et al.
Publicado: (2023)