Cargando…
Utilization of Haar wavelet collocation technique for fractal-fractional order problem
This work is devoted for establishing adequate results for the qualitative theory as well as approximate solution of “fractal-fractional order differential equations” (F-FDEs). For the required numerical results, we use Haar wavelet collocation (H-W-C) method which has very rarely utilized for F-FDE...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10285150/ https://www.ncbi.nlm.nih.gov/pubmed/37360113 http://dx.doi.org/10.1016/j.heliyon.2023.e17123 |
Sumario: | This work is devoted for establishing adequate results for the qualitative theory as well as approximate solution of “fractal-fractional order differential equations” (F-FDEs). For the required numerical results, we use Haar wavelet collocation (H-W-C) method which has very rarely utilized for F-FDEs. We establish the general algorithm for F-FDEs to compute numerical solution for the considered class. Also, we establish a result devoted to the qualitative theory via Banach fixed point result. A results devoted to Ulam-Hyers (U-H) stability are also included. Two pertinent examples are given along with the comparison and different norms of errors displayed in figures as well as tables. |
---|