Cargando…
Learning the heterogeneous representation of brain's structure from serial SEM images using a masked autoencoder
INTRODUCTION: The exorbitant cost of accurately annotating the large-scale serial scanning electron microscope (SEM) images as the ground truth for training has always been a great challenge for brain map reconstruction by deep learning methods in neural connectome studies. The representation abilit...
Autores principales: | Cheng, Ao, Shi, Jiahao, Wang, Lirong, Zhang, Ruobing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10285402/ https://www.ncbi.nlm.nih.gov/pubmed/37360945 http://dx.doi.org/10.3389/fninf.2023.1118419 |
Ejemplares similares
-
Improving the Neural Segmentation of Blurry Serial SEM Images by Blind Deblurring
por: Cheng, Ao, et al.
Publicado: (2023) -
Convolutional autoencoder joint boundary and mask adversarial learning for fundus image segmentation
por: Zhang, Xu, et al.
Publicado: (2022) -
A Convenient All-Cell Optical Imaging Method Compatible with Serial SEM for Brain Mapping
por: Wang, Tianyi, et al.
Publicado: (2023) -
Toward a more informative representation of the fetal–neonatal brain connectome using variational autoencoder
por: Kim, Jung-Hoon, et al.
Publicado: (2023) -
Variational autoencoders learn transferrable representations of metabolomics data
por: Gomari, Daniel P., et al.
Publicado: (2022)