Cargando…
Development, comparison, and validation of four intelligent, practical machine learning models for patients with prostate-specific antigen in the gray zone
PURPOSE: Machine learning prediction models based on LogisticRegression, XGBoost, GaussianNB, and LGBMClassifier for patients in the prostate-specific antigen gray zone are to be developed and compared, identifying valuable predictors. Predictive models are to be integrated into actual clinical deci...
Autores principales: | Liu, Taobin, Zhang, Xiaoming, Chen, Ru, Deng, Xinxi, Fu, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10285702/ https://www.ncbi.nlm.nih.gov/pubmed/37361597 http://dx.doi.org/10.3389/fonc.2023.1157384 |
Ejemplares similares
-
Metabolomics Profiling Discriminates Prostate Cancer From Benign Prostatic Hyperplasia Within the Prostate-Specific Antigen Gray Zone
por: Xu, Bei, et al.
Publicado: (2021) -
The value of EYA1/3/4 in clear cell renal cell carcinoma: a study from multiple databases
por: Liu, Taobin, et al.
Publicado: (2023) -
Pathological diagnostic nomograms for predicting malignant histology and unfavorable pathology in patients with endophytic renal tumor
por: Deng, Xinxi, et al.
Publicado: (2022) -
Incidence and associated factors of developing second pelvic malignant neoplasms among prostate cancer patients treated with radiotherapy
por: Wang, Youbiao, et al.
Publicado: (2023) -
Evaluation and multi-institutional validation of a novel urine biomarker lncRNA546 to improve the diagnostic specificity of prostate cancer in PSA gray-zone
por: Liu, Fei, et al.
Publicado: (2022)