Cargando…
Construction and validation of prognostic models in critically Ill patients with sepsis-associated acute kidney injury: interpretable machine learning approach
BACKGROUND: Acute kidney injury (AKI) is a common complication in critically ill patients with sepsis and is often associated with a poor prognosis. We aimed to construct and validate an interpretable prognostic prediction model for patients with sepsis-associated AKI (S-AKI) using machine learning...
Autores principales: | Fan, Zhiyan, Jiang, Jiamei, Xiao, Chen, Chen, Youlei, Xia, Quan, Wang, Juan, Fang, Mengjuan, Wu, Zesheng, Chen, Fanghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10286378/ https://www.ncbi.nlm.nih.gov/pubmed/37349774 http://dx.doi.org/10.1186/s12967-023-04205-4 |
Ejemplares similares
-
Acute kidney injury-attributable mortality in critically ill patients with sepsis
por: Wang, Zhiyi, et al.
Publicado: (2022) -
Machine learning algorithm to predict mortality in critically ill patients with sepsis-associated acute kidney injury
por: Li, Xunliang, et al.
Publicado: (2023) -
Prognostic significance of nonthyroidal illness syndrome in critically ill adult patients with sepsis
por: Padhi, Rajesh, et al.
Publicado: (2018) -
Prognostic Relevance of Altered Lymphocyte Subpopulations in Critical Illness and Sepsis
por: Hohlstein, Philipp, et al.
Publicado: (2019) -
Machine learning for early discrimination between transient and persistent acute kidney injury in critically ill patients with sepsis
por: Luo, Xiao-Qin, et al.
Publicado: (2021)