Cargando…
Genome-wide identification and immune response analysis of mitogen-activated protein kinase cascades in tea geometrid, Ectropis grisescens Warren (Geometridae, Lepidoptera)
BACKGROUND: Tea geometrid Ectropis grisescens (Geometridae: Lepidoptera), is one of the most destructive defoliators in tea plantations in China. The MAPK cascade is known to be an evolutionarily conserved signaling module, acting as pivotal cores of host–pathogen interactions. Although the chromoso...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10286454/ https://www.ncbi.nlm.nih.gov/pubmed/37349677 http://dx.doi.org/10.1186/s12864-023-09446-7 |
_version_ | 1785061753006063616 |
---|---|
author | Wu, Xiaozhu Zhou, Chenghua Li, Xiaofang Lin, Jingyi Aguila, Luis Carlos Ramos Wen, Feng Wang, Liande |
author_facet | Wu, Xiaozhu Zhou, Chenghua Li, Xiaofang Lin, Jingyi Aguila, Luis Carlos Ramos Wen, Feng Wang, Liande |
author_sort | Wu, Xiaozhu |
collection | PubMed |
description | BACKGROUND: Tea geometrid Ectropis grisescens (Geometridae: Lepidoptera), is one of the most destructive defoliators in tea plantations in China. The MAPK cascade is known to be an evolutionarily conserved signaling module, acting as pivotal cores of host–pathogen interactions. Although the chromosome-level reference genome of E. grisescens was published, the whole MAPK cascade gene family has not been fully identified yet, especially the expression patterns of MAPK cascade gene family members upon an ecological biopesticide, Metarhizium anisopliae, remains to be understood. RESULTS: In this study, we have identified 19 MAPK cascade gene family members in E. grisescens, including 5 MAPKs, 4 MAP2Ks, 8 MAP3Ks, and 2 MAP4Ks. The molecular evolution characteristics of the whole Eg-MAPK cascade gene family, including gene structures, protein structural organization, chromosomal localization, orthologs construction and gene duplication, were systematically investigated. Our results showed that the members of Eg-MAPK cascade gene family were unevenly distributed in 13 chromosomes, and the clustered members in each group shared similar structures of the genes and proteins. Gene expression data revealed that MAPK cascade genes were expressed in all four developmental stages of E. grisescens and were fairly and evenly distributed in four different larva tissues. Importantly, most of the MAPK cascade genes were induced or constitutively expressed upon M. anisopliae infection. CONCLUSIONS: In summary, the present study was one of few studies on MAPK cascade gene in E. grisescens. The characterization and expression profiles of Eg-MAPK cascades genes might help develop new ecofriendly biological insecticides to protect tea trees. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-023-09446-7. |
format | Online Article Text |
id | pubmed-10286454 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-102864542023-06-23 Genome-wide identification and immune response analysis of mitogen-activated protein kinase cascades in tea geometrid, Ectropis grisescens Warren (Geometridae, Lepidoptera) Wu, Xiaozhu Zhou, Chenghua Li, Xiaofang Lin, Jingyi Aguila, Luis Carlos Ramos Wen, Feng Wang, Liande BMC Genomics Research BACKGROUND: Tea geometrid Ectropis grisescens (Geometridae: Lepidoptera), is one of the most destructive defoliators in tea plantations in China. The MAPK cascade is known to be an evolutionarily conserved signaling module, acting as pivotal cores of host–pathogen interactions. Although the chromosome-level reference genome of E. grisescens was published, the whole MAPK cascade gene family has not been fully identified yet, especially the expression patterns of MAPK cascade gene family members upon an ecological biopesticide, Metarhizium anisopliae, remains to be understood. RESULTS: In this study, we have identified 19 MAPK cascade gene family members in E. grisescens, including 5 MAPKs, 4 MAP2Ks, 8 MAP3Ks, and 2 MAP4Ks. The molecular evolution characteristics of the whole Eg-MAPK cascade gene family, including gene structures, protein structural organization, chromosomal localization, orthologs construction and gene duplication, were systematically investigated. Our results showed that the members of Eg-MAPK cascade gene family were unevenly distributed in 13 chromosomes, and the clustered members in each group shared similar structures of the genes and proteins. Gene expression data revealed that MAPK cascade genes were expressed in all four developmental stages of E. grisescens and were fairly and evenly distributed in four different larva tissues. Importantly, most of the MAPK cascade genes were induced or constitutively expressed upon M. anisopliae infection. CONCLUSIONS: In summary, the present study was one of few studies on MAPK cascade gene in E. grisescens. The characterization and expression profiles of Eg-MAPK cascades genes might help develop new ecofriendly biological insecticides to protect tea trees. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-023-09446-7. BioMed Central 2023-06-22 /pmc/articles/PMC10286454/ /pubmed/37349677 http://dx.doi.org/10.1186/s12864-023-09446-7 Text en © The Author(s) 2023, corrected publication 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Wu, Xiaozhu Zhou, Chenghua Li, Xiaofang Lin, Jingyi Aguila, Luis Carlos Ramos Wen, Feng Wang, Liande Genome-wide identification and immune response analysis of mitogen-activated protein kinase cascades in tea geometrid, Ectropis grisescens Warren (Geometridae, Lepidoptera) |
title | Genome-wide identification and immune response analysis of mitogen-activated protein kinase cascades in tea geometrid, Ectropis grisescens Warren (Geometridae, Lepidoptera) |
title_full | Genome-wide identification and immune response analysis of mitogen-activated protein kinase cascades in tea geometrid, Ectropis grisescens Warren (Geometridae, Lepidoptera) |
title_fullStr | Genome-wide identification and immune response analysis of mitogen-activated protein kinase cascades in tea geometrid, Ectropis grisescens Warren (Geometridae, Lepidoptera) |
title_full_unstemmed | Genome-wide identification and immune response analysis of mitogen-activated protein kinase cascades in tea geometrid, Ectropis grisescens Warren (Geometridae, Lepidoptera) |
title_short | Genome-wide identification and immune response analysis of mitogen-activated protein kinase cascades in tea geometrid, Ectropis grisescens Warren (Geometridae, Lepidoptera) |
title_sort | genome-wide identification and immune response analysis of mitogen-activated protein kinase cascades in tea geometrid, ectropis grisescens warren (geometridae, lepidoptera) |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10286454/ https://www.ncbi.nlm.nih.gov/pubmed/37349677 http://dx.doi.org/10.1186/s12864-023-09446-7 |
work_keys_str_mv | AT wuxiaozhu genomewideidentificationandimmuneresponseanalysisofmitogenactivatedproteinkinasecascadesinteageometridectropisgrisescenswarrengeometridaelepidoptera AT zhouchenghua genomewideidentificationandimmuneresponseanalysisofmitogenactivatedproteinkinasecascadesinteageometridectropisgrisescenswarrengeometridaelepidoptera AT lixiaofang genomewideidentificationandimmuneresponseanalysisofmitogenactivatedproteinkinasecascadesinteageometridectropisgrisescenswarrengeometridaelepidoptera AT linjingyi genomewideidentificationandimmuneresponseanalysisofmitogenactivatedproteinkinasecascadesinteageometridectropisgrisescenswarrengeometridaelepidoptera AT aguilaluiscarlosramos genomewideidentificationandimmuneresponseanalysisofmitogenactivatedproteinkinasecascadesinteageometridectropisgrisescenswarrengeometridaelepidoptera AT wenfeng genomewideidentificationandimmuneresponseanalysisofmitogenactivatedproteinkinasecascadesinteageometridectropisgrisescenswarrengeometridaelepidoptera AT wangliande genomewideidentificationandimmuneresponseanalysisofmitogenactivatedproteinkinasecascadesinteageometridectropisgrisescenswarrengeometridaelepidoptera |