Cargando…

PSMD8 can serve as potential biomarker and therapeutic target of the PSMD family in ovarian cancer: based on bioinformatics analysis and in vitro validation

BACKGROUND: The ubiquity-proteasome system is an indispensable mechanism for regulating intracellular protein degradation, thereby affecting human antigen processing, signal transduction, and cell cycle regulation. We used bioinformatics database to predict the expression and related roles of all me...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xiao, Li, Xinru, Hu, Yuexin, Liu, Ouxuan, Wang, Yuxuan, Li, Siting, Yang, Qing, Lin, Bei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10286491/
https://www.ncbi.nlm.nih.gov/pubmed/37349676
http://dx.doi.org/10.1186/s12885-023-11017-8
Descripción
Sumario:BACKGROUND: The ubiquity-proteasome system is an indispensable mechanism for regulating intracellular protein degradation, thereby affecting human antigen processing, signal transduction, and cell cycle regulation. We used bioinformatics database to predict the expression and related roles of all members of the PSMD family in ovarian cancer. Our findings may provide a theoretical basis for early diagnosis, prognostic assessment, and targeted therapy of ovarian cancer. METHODS: GEPIA, cBioPortal, and Kaplan–Meier Plotter databases were used to analyze the mRNA expression levels, gene variation, and prognostic value of PSMD family members in ovarian cancer. PSMD8 was identified as the member with the best prognostic value. The TISIDB database was used to analyze the correlation between PSMD8 and immunity, and the role of PSMD8 in ovarian cancer tissue was verified by immunohistochemical experiments. The relationship of PSMD8 expression with clinicopathological parameters and survival outcomes of ovarian cancer patients was analyzed. The effects of PSMD8 on malignant biological behaviors of invasion, migration, and proliferation of ovarian cancer cells were studied by in vitro experiments. RESULTS: The expression levels of PSMD8/14 mRNA in ovarian cancer tissues were significantly higher than those in normal ovarian tissues, and the expression levels of PSMD2/3/4/5/8/11/12/14 mRNA were associated with prognosis. Up-regulation of PSMD4/8/14 mRNA expression was associated with poor OS, and the up-regulation of PSMD2/3/5/8 mRNA expression was associated with poor PFS in patients with ovarian serous carcinomas. Gene function and enrichment analysis showed that PSMD8 is mainly involved in biological processes such as energy metabolism, DNA replication, and protein synthesis. Immunohistochemical experiments showed that PSMD8 was mainly expressed in the cytoplasm and the expression level was correlated with FIGO stage. Patients with high PSMD8 expression had poor prognosis. Overexpression of PSMD8 significantly enhanced the proliferation, migration, and invasion abilities in ovarian cancer cells. CONCLUSION: We observed different degrees of abnormal expression of members of PSMD family in ovarian cancer. Among these, PSMD8 was significantly overexpressed in ovarian malignant tissue, and was associated with poor prognosis. PSMDs, especially PSMD8, can serve as potential diagnostic and prognostic biomarkers and therapeutic targets in ovarian cancer. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12885-023-11017-8.