Cargando…
AutoPrognosis 2.0: Democratizing diagnostic and prognostic modeling in healthcare with automated machine learning
Diagnostic and prognostic models are increasingly important in medicine and inform many clinical decisions. Recently, machine learning approaches have shown improvement over conventional modeling techniques by better capturing complex interactions between patient covariates in a data-driven manner....
Autores principales: | Imrie, Fergus, Cebere, Bogdan, McKinney, Eoin F., van der Schaar, Mihaela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287005/ https://www.ncbi.nlm.nih.gov/pubmed/37347752 http://dx.doi.org/10.1371/journal.pdig.0000276 |
Ejemplares similares
-
Assessing eligibility for lung cancer screening using parsimonious ensemble machine learning models: A development and validation study
por: Callender, Thomas, et al.
Publicado: (2023) -
How artificial intelligence and machine learning can help healthcare systems respond to COVID-19
por: van der Schaar, Mihaela, et al.
Publicado: (2020) -
Prognostication and Risk Factors for Cystic Fibrosis via Automated Machine Learning
por: Alaa, Ahmed M., et al.
Publicado: (2018) -
Deep Generative Models for 3D Linker Design
por: Imrie, Fergus, et al.
Publicado: (2020) -
Democratizing Artificial Intelligence Imaging Analysis With Automated Machine Learning: Tutorial
por: Thirunavukarasu, Arun James, et al.
Publicado: (2023)