Cargando…
Combining High-Resolution Imaging, Deep Learning, and Dynamic Modeling to Separate Disease and Senescence in Wheat Canopies
Maintenance of sufficiently healthy green leaf area after anthesis is key to ensuring an adequate assimilate supply for grain filling. Tightly regulated age-related physiological senescence and various biotic and abiotic stressors drive overall greenness decay dynamics under field conditions. Beside...
Autores principales: | Anderegg, Jonas, Zenkl, Radek, Walter, Achim, Hund, Andreas, McDonald, Bruce A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287056/ https://www.ncbi.nlm.nih.gov/pubmed/37363146 http://dx.doi.org/10.34133/plantphenomics.0053 |
Ejemplares similares
-
Hyperspectral Canopy Sensing of Wheat Septoria Tritici Blotch Disease
por: Yu, Kang, et al.
Publicado: (2018) -
Spectral Vegetation Indices to Track Senescence Dynamics in Diverse Wheat Germplasm
por: Anderegg, Jonas, et al.
Publicado: (2020) -
Outdoor Plant Segmentation With Deep Learning for High-Throughput Field Phenotyping on a Diverse Wheat Dataset
por: Zenkl, Radek, et al.
Publicado: (2022) -
Assessment of Multi-Image Unmanned Aerial Vehicle Based High-Throughput Field Phenotyping of Canopy Temperature
por: Perich, Gregor, et al.
Publicado: (2020) -
An image analysis pipeline for automated classification of imaging light conditions and for quantification of wheat canopy cover time series in field phenotyping
por: Yu, Kang, et al.
Publicado: (2017)