Cargando…
Ensuring fair, safe, and interpretable artificial intelligence-based prediction tools in a real-world oncological setting
BACKGROUND: Cancer patients often experience treatment-related symptoms which, if uncontrolled, may require emergency department admission. We developed models identifying breast or genitourinary cancer patients at the risk of attending emergency department (ED) within 30-days and demonstrated the d...
Autores principales: | George, Renee, Ellis, Benjamin, West, Andrew, Graff, Alex, Weaver, Stephen, Abramowski, Michelle, Brown, Katelin, Kerr, Lauren, Lu, Sheng-Chieh, Swisher, Christine, Sidey-Gibbons, Chris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287624/ https://www.ncbi.nlm.nih.gov/pubmed/37349541 http://dx.doi.org/10.1038/s43856-023-00317-6 |
Ejemplares similares
-
On the importance of interpretable machine learning predictions to inform clinical decision making in oncology
por: Lu, Sheng-Chieh, et al.
Publicado: (2023) -
Interpretable artificial intelligence in radiology and radiation oncology
por: Cui, Sunan, et al.
Publicado: (2023) -
Ensuring generalized fairness in batch classification
por: Pal, Manjish, et al.
Publicado: (2023) -
Explainable vs. interpretable artificial intelligence frameworks in oncology
por: Bertsimas, Dimitris, et al.
Publicado: (2023) -
Ensuring Food Integrity by Metrology and FAIR Data Principles
por: Rychlik, Michael, et al.
Publicado: (2018)