Cargando…
Remaining useful lifetime estimation for discrete power electronic devices using physics-informed neural network
Estimation of Remaining Useful Lifetime (RUL) of discrete power electronics is important to enable predictive maintenance and ensure system safety. Conventional data-driven approaches using neural networks have been applied to address this challenge. However, due to ignoring the physical properties...
Autores principales: | Lu, Zhonghai, Guo, Chao, Liu, Mingrui, Shi, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287649/ https://www.ncbi.nlm.nih.gov/pubmed/37349382 http://dx.doi.org/10.1038/s41598-023-37154-5 |
Ejemplares similares
-
Characterization of Initial Parameter Information for Lifetime Prediction of Electronic Devices
por: Li, Zhigang, et al.
Publicado: (2016) -
Remaining Useful Lifetime Prediction Based on Extended Kalman Particle Filter for Power SiC MOSFETs
por: Wu, Wei, et al.
Publicado: (2023) -
On-Line Remaining Useful Life Estimation of Power Connectors Focused on Predictive Maintenance
por: Riba, Jordi-Roger, et al.
Publicado: (2021) -
Discrete or continuous – aging remains aging
por: Hackenberger, Branimir K.
Publicado: (2020) -
Deployment-based lifetime optimization for linear wireless sensor networks considering both retransmission and discrete power control
por: Li, Ruiying, et al.
Publicado: (2017)