Cargando…
Data-driven models to predict shale wettability for CO(2) sequestration applications
The significance of CO(2) wetting behavior in shale formations has been emphasized in various CO(2) sequestration applications. Traditional laboratory experimental techniques used to assess shale wettability are complex and time-consuming. To overcome these limitations, the study proposes the use of...
Autores principales: | Ibrahim, Ahmed Farid, Elkatatny, Salaheldin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287739/ https://www.ncbi.nlm.nih.gov/pubmed/37349517 http://dx.doi.org/10.1038/s41598-023-37327-2 |
Ejemplares similares
-
Application of Machine Learning to Predict Estimated Ultimate Recovery for Multistage Hydraulically Fractured Wells in Niobrara Shale Formation
por: Ibrahim, Ahmed Farid, et al.
Publicado: (2022) -
A hybrid data-driven solution to facilitate safe mud window prediction
por: Gowida, Ahmed, et al.
Publicado: (2022) -
Data-Driven Framework
for Real-time Rheological Properties
Prediction of Flat Rheology Synthetic Oil-Based Drilling Fluids
por: Abdelaal, Ahmed, et al.
Publicado: (2023) -
Machine learning application to predict in-situ stresses from logging data
por: Ibrahim, Ahmed Farid, et al.
Publicado: (2021) -
Prediction of the Least Principal Stresses Using Drilling Data: A Machine Learning Application
por: Gowida, Ahmed, et al.
Publicado: (2021)