Cargando…
Enteral administration of the protease inhibitor gabexate mesilate preserves vascular function in experimental trauma/hemorrhagic shock
Preserving vascular function is crucial for preventing multiorgan failure and death in ischemic and low-pressure states such as trauma/hemorrhagic shock (T/HS). It has recently been reported that inhibiting circulating proteases released from the bowel to the circulation during T/HS may preserve vas...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287748/ https://www.ncbi.nlm.nih.gov/pubmed/37349360 http://dx.doi.org/10.1038/s41598-023-36021-7 |
Sumario: | Preserving vascular function is crucial for preventing multiorgan failure and death in ischemic and low-pressure states such as trauma/hemorrhagic shock (T/HS). It has recently been reported that inhibiting circulating proteases released from the bowel to the circulation during T/HS may preserve vascular function and improve outcomes following T/HS. This study aimed to evaluate the role of the serine protease inhibitor gabexate mesilate (GM) in preserving vascular function during T/HS when given enterally. We studied the vascular reactivity of mesenteric arteries from male Wistar rats treated with enteral GM (10 mg/kg) (GM-treated, n = 6) or control (Shock-control, n = 6) following (T/HS) using pressure myography. Concentration–response curves of endothelial-dependent and endothelial-independent agonists (e.g., acetylcholine, sodium nitroprusside) ranging from 10(−10) to 10(−5) M were performed. In a second set of experiments, ex-vivo arteries from healthy rats were perfused with plasma from shocked animals from both groups and vascular performance was similarly measured. Arteries from the GM-treated group demonstrated a preserved concentration–response curve to the α(1) adrenergic agonist phenylephrine compared to arteries from Shock-control animals (− logEC(50): − 5.73 ± 0.25 vs. − 6.48 ± 0.2, Shock-control vs. GM-treated, p = 0.04). When perfused with plasma from GM-treated rats, healthy arteries exhibited an even greater constriction and sensitivity to phenylephrine (− logEC(50): − 6.62 ± 0.21 vs. − 7.13 ± 0.21, Shock-control vs. GM-treated, p = 0.02). Enteral GM also preserved the endothelium-dependent vascular response to agonists following T/HS and limited syndecan-1 shedding as a marker of glycocalyx compromise (41.84 ± 9 vs. 17.63 ± 3.97 ng/mL, Shock-control vs. GM-treated, p = 0.02). Syndecan-1 cleavage was correlated with plasma trypsin-like activity (r(2) = 0.9611). Enteral gabexate mesilate was able to maintain vascular function in experimental T/HS, which was reflected by improved hemodynamics (mean arterial pressure 50.39 ± 7.91 vs. 64.95 ± 3.43 mmHg, Shock-control vs. GM treated, p = 0.0001). Enteral serine protease inhibition may be a potential therapeutic intervention in the treatment of T/HS. |
---|