Cargando…
Quantifying the spatial nonstationary response of influencing factors on ecosystem health based on the geographical weighted regression (GWR) model: an example in Inner Mongolia, China, from 1995 to 2020
The identification of ecosystem health and its influencing factors is crucial to the sustainable management of ecosystems and ecosystem restoration. Although numerous studies on ecosystem health have been carried out from different perspectives, few studies have systematically investigated the spati...
Autores principales: | Na, Li, Shi, Yu, Guo, Luo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287787/ https://www.ncbi.nlm.nih.gov/pubmed/37193792 http://dx.doi.org/10.1007/s11356-023-26915-4 |
Ejemplares similares
-
Using Geographically Weighted Regression (GWR) to Explore Spatial Varying Relationships of Immature Mosquitoes and Human Densities with the Incidence of Dengue
por: Lin, Chia-Hsien, et al.
Publicado: (2011) -
Exploration of spatial-temporal varying impacts on COVID-19 cumulative case in Texas using geographically weighted regression (GWR)
por: Wu, Xiu, et al.
Publicado: (2021) -
Implications of Nonstationary Effect on Geographically Weighted Total Least Squares Regression for PM(2.5) Estimation
por: Mokhtari, Arezoo, et al.
Publicado: (2021) -
Quantifying the ecological carrying capacity of grasslands in Inner Mongolia
por: Guo, Caiyun, et al.
Publicado: (2023) -
Exploration of potential risks of Hand, Foot, and Mouth Disease in Inner Mongolia Autonomous Region, China Using Geographically Weighted Regression Model
por: Hong, Zhimin, et al.
Publicado: (2018)