Cargando…
NHGNN-DTA: a node-adaptive hybrid graph neural network for interpretable drug–target binding affinity prediction
MOTIVATION: Large-scale prediction of drug–target affinity (DTA) plays an important role in drug discovery. In recent years, machine learning algorithms have made great progress in DTA prediction by utilizing sequence or structural information of both drugs and proteins. However, sequence-based algo...
Autores principales: | He, Haohuai, Chen, Guanxing, Chen, Calvin Yu-Chian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287904/ https://www.ncbi.nlm.nih.gov/pubmed/37252835 http://dx.doi.org/10.1093/bioinformatics/btad355 |
Ejemplares similares
-
MGraphDTA: deep multiscale graph neural network for explainable drug–target binding affinity prediction
por: Yang, Ziduo, et al.
Publicado: (2022) -
GraphscoreDTA: optimized graph neural network for protein–ligand binding affinity prediction
por: Wang, Kaili, et al.
Publicado: (2023) -
Hybrid neural network approaches to predict drug–target binding affinity for drug repurposing: screening for potential leads for Alzheimer’s disease
por: Wu, Xialin, et al.
Publicado: (2023) -
iEdgeDTA: integrated edge information and 1D graph convolutional neural networks for binding affinity prediction
por: Suviriyapaisal, Natchanon, et al.
Publicado: (2023) -
MSGNN-DTA: Multi-Scale Topological Feature Fusion Based on Graph Neural Networks for Drug–Target Binding Affinity Prediction
por: Wang, Shudong, et al.
Publicado: (2023)