Cargando…
Ensemble deep learning of embeddings for clustering multimodal single-cell omics data
MOTIVATION: Recent advances in multimodal single-cell omics technologies enable multiple modalities of molecular attributes, such as gene expression, chromatin accessibility, and protein abundance, to be profiled simultaneously at a global level in individual cells. While the increasing availability...
Autores principales: | Yu, Lijia, Liu, Chunlei, Yang, Jean Yee Hwa, Yang, Pengyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287920/ https://www.ncbi.nlm.nih.gov/pubmed/37314966 http://dx.doi.org/10.1093/bioinformatics/btad382 |
Ejemplares similares
-
Multi-task learning from multimodal single-cell omics with Matilda
por: Liu, Chunlei, et al.
Publicado: (2023) -
Clustering of single-cell multi-omics data with a multimodal deep learning method
por: Lin, Xiang, et al.
Publicado: (2022) -
Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis
por: Geddes, Thomas A., et al.
Publicado: (2019) -
Gene regulatory network reconstruction: harnessing the power of single-cell multi-omic data
por: Kim, Daniel, et al.
Publicado: (2023) -
Multimodal deep learning approaches for single-cell multi-omics data integration
por: Athaya, Tasbiraha, et al.
Publicado: (2023)