Cargando…

Structural analysis of the Candida albicans mitochondrial DNA maintenance factor Gcf1p reveals a dynamic DNA-bridging mechanism

The compaction of mitochondrial DNA (mtDNA) is regulated by architectural HMG-box proteins whose limited cross-species similarity suggests diverse underlying mechanisms. Viability of Candida albicans, a human antibiotic-resistant mucosal pathogen, is compromised by altering mtDNA regulators. Among t...

Descripción completa

Detalles Bibliográficos
Autores principales: Tarrés-Solé, Aleix, Battistini, Federica, Gerhold, Joachim M, Piétrement, Olivier, Martínez-García, Belén, Ruiz-López, Elena, Lyonnais, Sébastien, Bernadó, Pau, Roca, Joaquim, Orozco, Modesto, Le Cam, Eric, Sedman, Juhan, Solà, Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287934/
https://www.ncbi.nlm.nih.gov/pubmed/37207342
http://dx.doi.org/10.1093/nar/gkad397
_version_ 1785061973574025216
author Tarrés-Solé, Aleix
Battistini, Federica
Gerhold, Joachim M
Piétrement, Olivier
Martínez-García, Belén
Ruiz-López, Elena
Lyonnais, Sébastien
Bernadó, Pau
Roca, Joaquim
Orozco, Modesto
Le Cam, Eric
Sedman, Juhan
Solà, Maria
author_facet Tarrés-Solé, Aleix
Battistini, Federica
Gerhold, Joachim M
Piétrement, Olivier
Martínez-García, Belén
Ruiz-López, Elena
Lyonnais, Sébastien
Bernadó, Pau
Roca, Joaquim
Orozco, Modesto
Le Cam, Eric
Sedman, Juhan
Solà, Maria
author_sort Tarrés-Solé, Aleix
collection PubMed
description The compaction of mitochondrial DNA (mtDNA) is regulated by architectural HMG-box proteins whose limited cross-species similarity suggests diverse underlying mechanisms. Viability of Candida albicans, a human antibiotic-resistant mucosal pathogen, is compromised by altering mtDNA regulators. Among them, there is the mtDNA maintenance factor Gcf1p, which differs in sequence and structure from its human and Saccharomyces cerevisiae counterparts, TFAM and Abf2p. Our crystallographic, biophysical, biochemical and computational analysis showed that Gcf1p forms dynamic protein/DNA multimers by a combined action of an N-terminal unstructured tail and a long helix. Furthermore, an HMG-box domain canonically binds the minor groove and dramatically bends the DNA while, unprecedentedly, a second HMG-box binds the major groove without imposing distortions. This architectural protein thus uses its multiple domains to bridge co-aligned DNA segments without altering the DNA topology, revealing a new mechanism of mtDNA condensation.
format Online
Article
Text
id pubmed-10287934
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-102879342023-06-24 Structural analysis of the Candida albicans mitochondrial DNA maintenance factor Gcf1p reveals a dynamic DNA-bridging mechanism Tarrés-Solé, Aleix Battistini, Federica Gerhold, Joachim M Piétrement, Olivier Martínez-García, Belén Ruiz-López, Elena Lyonnais, Sébastien Bernadó, Pau Roca, Joaquim Orozco, Modesto Le Cam, Eric Sedman, Juhan Solà, Maria Nucleic Acids Res Structural Biology The compaction of mitochondrial DNA (mtDNA) is regulated by architectural HMG-box proteins whose limited cross-species similarity suggests diverse underlying mechanisms. Viability of Candida albicans, a human antibiotic-resistant mucosal pathogen, is compromised by altering mtDNA regulators. Among them, there is the mtDNA maintenance factor Gcf1p, which differs in sequence and structure from its human and Saccharomyces cerevisiae counterparts, TFAM and Abf2p. Our crystallographic, biophysical, biochemical and computational analysis showed that Gcf1p forms dynamic protein/DNA multimers by a combined action of an N-terminal unstructured tail and a long helix. Furthermore, an HMG-box domain canonically binds the minor groove and dramatically bends the DNA while, unprecedentedly, a second HMG-box binds the major groove without imposing distortions. This architectural protein thus uses its multiple domains to bridge co-aligned DNA segments without altering the DNA topology, revealing a new mechanism of mtDNA condensation. Oxford University Press 2023-05-19 /pmc/articles/PMC10287934/ /pubmed/37207342 http://dx.doi.org/10.1093/nar/gkad397 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Structural Biology
Tarrés-Solé, Aleix
Battistini, Federica
Gerhold, Joachim M
Piétrement, Olivier
Martínez-García, Belén
Ruiz-López, Elena
Lyonnais, Sébastien
Bernadó, Pau
Roca, Joaquim
Orozco, Modesto
Le Cam, Eric
Sedman, Juhan
Solà, Maria
Structural analysis of the Candida albicans mitochondrial DNA maintenance factor Gcf1p reveals a dynamic DNA-bridging mechanism
title Structural analysis of the Candida albicans mitochondrial DNA maintenance factor Gcf1p reveals a dynamic DNA-bridging mechanism
title_full Structural analysis of the Candida albicans mitochondrial DNA maintenance factor Gcf1p reveals a dynamic DNA-bridging mechanism
title_fullStr Structural analysis of the Candida albicans mitochondrial DNA maintenance factor Gcf1p reveals a dynamic DNA-bridging mechanism
title_full_unstemmed Structural analysis of the Candida albicans mitochondrial DNA maintenance factor Gcf1p reveals a dynamic DNA-bridging mechanism
title_short Structural analysis of the Candida albicans mitochondrial DNA maintenance factor Gcf1p reveals a dynamic DNA-bridging mechanism
title_sort structural analysis of the candida albicans mitochondrial dna maintenance factor gcf1p reveals a dynamic dna-bridging mechanism
topic Structural Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287934/
https://www.ncbi.nlm.nih.gov/pubmed/37207342
http://dx.doi.org/10.1093/nar/gkad397
work_keys_str_mv AT tarressolealeix structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism
AT battistinifederica structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism
AT gerholdjoachimm structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism
AT pietrementolivier structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism
AT martinezgarciabelen structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism
AT ruizlopezelena structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism
AT lyonnaissebastien structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism
AT bernadopau structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism
AT rocajoaquim structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism
AT orozcomodesto structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism
AT lecameric structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism
AT sedmanjuhan structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism
AT solamaria structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism