Cargando…
Structural analysis of the Candida albicans mitochondrial DNA maintenance factor Gcf1p reveals a dynamic DNA-bridging mechanism
The compaction of mitochondrial DNA (mtDNA) is regulated by architectural HMG-box proteins whose limited cross-species similarity suggests diverse underlying mechanisms. Viability of Candida albicans, a human antibiotic-resistant mucosal pathogen, is compromised by altering mtDNA regulators. Among t...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287934/ https://www.ncbi.nlm.nih.gov/pubmed/37207342 http://dx.doi.org/10.1093/nar/gkad397 |
_version_ | 1785061973574025216 |
---|---|
author | Tarrés-Solé, Aleix Battistini, Federica Gerhold, Joachim M Piétrement, Olivier Martínez-García, Belén Ruiz-López, Elena Lyonnais, Sébastien Bernadó, Pau Roca, Joaquim Orozco, Modesto Le Cam, Eric Sedman, Juhan Solà, Maria |
author_facet | Tarrés-Solé, Aleix Battistini, Federica Gerhold, Joachim M Piétrement, Olivier Martínez-García, Belén Ruiz-López, Elena Lyonnais, Sébastien Bernadó, Pau Roca, Joaquim Orozco, Modesto Le Cam, Eric Sedman, Juhan Solà, Maria |
author_sort | Tarrés-Solé, Aleix |
collection | PubMed |
description | The compaction of mitochondrial DNA (mtDNA) is regulated by architectural HMG-box proteins whose limited cross-species similarity suggests diverse underlying mechanisms. Viability of Candida albicans, a human antibiotic-resistant mucosal pathogen, is compromised by altering mtDNA regulators. Among them, there is the mtDNA maintenance factor Gcf1p, which differs in sequence and structure from its human and Saccharomyces cerevisiae counterparts, TFAM and Abf2p. Our crystallographic, biophysical, biochemical and computational analysis showed that Gcf1p forms dynamic protein/DNA multimers by a combined action of an N-terminal unstructured tail and a long helix. Furthermore, an HMG-box domain canonically binds the minor groove and dramatically bends the DNA while, unprecedentedly, a second HMG-box binds the major groove without imposing distortions. This architectural protein thus uses its multiple domains to bridge co-aligned DNA segments without altering the DNA topology, revealing a new mechanism of mtDNA condensation. |
format | Online Article Text |
id | pubmed-10287934 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-102879342023-06-24 Structural analysis of the Candida albicans mitochondrial DNA maintenance factor Gcf1p reveals a dynamic DNA-bridging mechanism Tarrés-Solé, Aleix Battistini, Federica Gerhold, Joachim M Piétrement, Olivier Martínez-García, Belén Ruiz-López, Elena Lyonnais, Sébastien Bernadó, Pau Roca, Joaquim Orozco, Modesto Le Cam, Eric Sedman, Juhan Solà, Maria Nucleic Acids Res Structural Biology The compaction of mitochondrial DNA (mtDNA) is regulated by architectural HMG-box proteins whose limited cross-species similarity suggests diverse underlying mechanisms. Viability of Candida albicans, a human antibiotic-resistant mucosal pathogen, is compromised by altering mtDNA regulators. Among them, there is the mtDNA maintenance factor Gcf1p, which differs in sequence and structure from its human and Saccharomyces cerevisiae counterparts, TFAM and Abf2p. Our crystallographic, biophysical, biochemical and computational analysis showed that Gcf1p forms dynamic protein/DNA multimers by a combined action of an N-terminal unstructured tail and a long helix. Furthermore, an HMG-box domain canonically binds the minor groove and dramatically bends the DNA while, unprecedentedly, a second HMG-box binds the major groove without imposing distortions. This architectural protein thus uses its multiple domains to bridge co-aligned DNA segments without altering the DNA topology, revealing a new mechanism of mtDNA condensation. Oxford University Press 2023-05-19 /pmc/articles/PMC10287934/ /pubmed/37207342 http://dx.doi.org/10.1093/nar/gkad397 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Structural Biology Tarrés-Solé, Aleix Battistini, Federica Gerhold, Joachim M Piétrement, Olivier Martínez-García, Belén Ruiz-López, Elena Lyonnais, Sébastien Bernadó, Pau Roca, Joaquim Orozco, Modesto Le Cam, Eric Sedman, Juhan Solà, Maria Structural analysis of the Candida albicans mitochondrial DNA maintenance factor Gcf1p reveals a dynamic DNA-bridging mechanism |
title | Structural analysis of the Candida albicans mitochondrial DNA maintenance factor Gcf1p reveals a dynamic DNA-bridging mechanism |
title_full | Structural analysis of the Candida albicans mitochondrial DNA maintenance factor Gcf1p reveals a dynamic DNA-bridging mechanism |
title_fullStr | Structural analysis of the Candida albicans mitochondrial DNA maintenance factor Gcf1p reveals a dynamic DNA-bridging mechanism |
title_full_unstemmed | Structural analysis of the Candida albicans mitochondrial DNA maintenance factor Gcf1p reveals a dynamic DNA-bridging mechanism |
title_short | Structural analysis of the Candida albicans mitochondrial DNA maintenance factor Gcf1p reveals a dynamic DNA-bridging mechanism |
title_sort | structural analysis of the candida albicans mitochondrial dna maintenance factor gcf1p reveals a dynamic dna-bridging mechanism |
topic | Structural Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287934/ https://www.ncbi.nlm.nih.gov/pubmed/37207342 http://dx.doi.org/10.1093/nar/gkad397 |
work_keys_str_mv | AT tarressolealeix structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism AT battistinifederica structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism AT gerholdjoachimm structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism AT pietrementolivier structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism AT martinezgarciabelen structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism AT ruizlopezelena structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism AT lyonnaissebastien structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism AT bernadopau structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism AT rocajoaquim structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism AT orozcomodesto structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism AT lecameric structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism AT sedmanjuhan structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism AT solamaria structuralanalysisofthecandidaalbicansmitochondrialdnamaintenancefactorgcf1prevealsadynamicdnabridgingmechanism |