Cargando…

Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity

Methods for cell clustering and gene expression from single-cell RNA sequencing (scRNA-seq) data are essential for biological interpretation of cell processes. Here, we present TRIAGE-Cluster which uses genome-wide epigenetic data from diverse bio-samples to identify genes demarcating cell diversity...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Yuliangzi, Shim, Woo Jun, Shen, Sophie, Sinniah, Enakshi, Pham, Duy, Su, Zezhuo, Mizikovsky, Dalia, White, Melanie D, Ho, Joshua W K, Nguyen, Quan, Bodén, Mikael, Palpant, Nathan J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287941/
https://www.ncbi.nlm.nih.gov/pubmed/37125641
http://dx.doi.org/10.1093/nar/gkad307
Descripción
Sumario:Methods for cell clustering and gene expression from single-cell RNA sequencing (scRNA-seq) data are essential for biological interpretation of cell processes. Here, we present TRIAGE-Cluster which uses genome-wide epigenetic data from diverse bio-samples to identify genes demarcating cell diversity in scRNA-seq data. By integrating patterns of repressive chromatin deposited across diverse cell types with weighted density estimation, TRIAGE-Cluster determines cell type clusters in a 2D UMAP space. We then present TRIAGE-ParseR, a machine learning method which evaluates gene expression rank lists to define gene groups governing the identity and function of cell types. We demonstrate the utility of this two-step approach using atlases of in vivo and in vitro cell diversification and organogenesis. We also provide a web accessible dashboard for analysis and download of data and software. Collectively, genome-wide epigenetic repression provides a versatile strategy to define cell diversity and study gene regulation of scRNA-seq data.