Cargando…

Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity

Methods for cell clustering and gene expression from single-cell RNA sequencing (scRNA-seq) data are essential for biological interpretation of cell processes. Here, we present TRIAGE-Cluster which uses genome-wide epigenetic data from diverse bio-samples to identify genes demarcating cell diversity...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Yuliangzi, Shim, Woo Jun, Shen, Sophie, Sinniah, Enakshi, Pham, Duy, Su, Zezhuo, Mizikovsky, Dalia, White, Melanie D, Ho, Joshua W K, Nguyen, Quan, Bodén, Mikael, Palpant, Nathan J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287941/
https://www.ncbi.nlm.nih.gov/pubmed/37125641
http://dx.doi.org/10.1093/nar/gkad307
_version_ 1785061974253502464
author Sun, Yuliangzi
Shim, Woo Jun
Shen, Sophie
Sinniah, Enakshi
Pham, Duy
Su, Zezhuo
Mizikovsky, Dalia
White, Melanie D
Ho, Joshua W K
Nguyen, Quan
Bodén, Mikael
Palpant, Nathan J
author_facet Sun, Yuliangzi
Shim, Woo Jun
Shen, Sophie
Sinniah, Enakshi
Pham, Duy
Su, Zezhuo
Mizikovsky, Dalia
White, Melanie D
Ho, Joshua W K
Nguyen, Quan
Bodén, Mikael
Palpant, Nathan J
author_sort Sun, Yuliangzi
collection PubMed
description Methods for cell clustering and gene expression from single-cell RNA sequencing (scRNA-seq) data are essential for biological interpretation of cell processes. Here, we present TRIAGE-Cluster which uses genome-wide epigenetic data from diverse bio-samples to identify genes demarcating cell diversity in scRNA-seq data. By integrating patterns of repressive chromatin deposited across diverse cell types with weighted density estimation, TRIAGE-Cluster determines cell type clusters in a 2D UMAP space. We then present TRIAGE-ParseR, a machine learning method which evaluates gene expression rank lists to define gene groups governing the identity and function of cell types. We demonstrate the utility of this two-step approach using atlases of in vivo and in vitro cell diversification and organogenesis. We also provide a web accessible dashboard for analysis and download of data and software. Collectively, genome-wide epigenetic repression provides a versatile strategy to define cell diversity and study gene regulation of scRNA-seq data.
format Online
Article
Text
id pubmed-10287941
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-102879412023-06-24 Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity Sun, Yuliangzi Shim, Woo Jun Shen, Sophie Sinniah, Enakshi Pham, Duy Su, Zezhuo Mizikovsky, Dalia White, Melanie D Ho, Joshua W K Nguyen, Quan Bodén, Mikael Palpant, Nathan J Nucleic Acids Res Methods Online Methods for cell clustering and gene expression from single-cell RNA sequencing (scRNA-seq) data are essential for biological interpretation of cell processes. Here, we present TRIAGE-Cluster which uses genome-wide epigenetic data from diverse bio-samples to identify genes demarcating cell diversity in scRNA-seq data. By integrating patterns of repressive chromatin deposited across diverse cell types with weighted density estimation, TRIAGE-Cluster determines cell type clusters in a 2D UMAP space. We then present TRIAGE-ParseR, a machine learning method which evaluates gene expression rank lists to define gene groups governing the identity and function of cell types. We demonstrate the utility of this two-step approach using atlases of in vivo and in vitro cell diversification and organogenesis. We also provide a web accessible dashboard for analysis and download of data and software. Collectively, genome-wide epigenetic repression provides a versatile strategy to define cell diversity and study gene regulation of scRNA-seq data. Oxford University Press 2023-05-01 /pmc/articles/PMC10287941/ /pubmed/37125641 http://dx.doi.org/10.1093/nar/gkad307 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methods Online
Sun, Yuliangzi
Shim, Woo Jun
Shen, Sophie
Sinniah, Enakshi
Pham, Duy
Su, Zezhuo
Mizikovsky, Dalia
White, Melanie D
Ho, Joshua W K
Nguyen, Quan
Bodén, Mikael
Palpant, Nathan J
Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity
title Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity
title_full Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity
title_fullStr Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity
title_full_unstemmed Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity
title_short Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity
title_sort inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity
topic Methods Online
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287941/
https://www.ncbi.nlm.nih.gov/pubmed/37125641
http://dx.doi.org/10.1093/nar/gkad307
work_keys_str_mv AT sunyuliangzi inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity
AT shimwoojun inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity
AT shensophie inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity
AT sinniahenakshi inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity
AT phamduy inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity
AT suzezhuo inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity
AT mizikovskydalia inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity
AT whitemelanied inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity
AT hojoshuawk inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity
AT nguyenquan inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity
AT bodenmikael inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity
AT palpantnathanj inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity