Cargando…
Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity
Methods for cell clustering and gene expression from single-cell RNA sequencing (scRNA-seq) data are essential for biological interpretation of cell processes. Here, we present TRIAGE-Cluster which uses genome-wide epigenetic data from diverse bio-samples to identify genes demarcating cell diversity...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287941/ https://www.ncbi.nlm.nih.gov/pubmed/37125641 http://dx.doi.org/10.1093/nar/gkad307 |
_version_ | 1785061974253502464 |
---|---|
author | Sun, Yuliangzi Shim, Woo Jun Shen, Sophie Sinniah, Enakshi Pham, Duy Su, Zezhuo Mizikovsky, Dalia White, Melanie D Ho, Joshua W K Nguyen, Quan Bodén, Mikael Palpant, Nathan J |
author_facet | Sun, Yuliangzi Shim, Woo Jun Shen, Sophie Sinniah, Enakshi Pham, Duy Su, Zezhuo Mizikovsky, Dalia White, Melanie D Ho, Joshua W K Nguyen, Quan Bodén, Mikael Palpant, Nathan J |
author_sort | Sun, Yuliangzi |
collection | PubMed |
description | Methods for cell clustering and gene expression from single-cell RNA sequencing (scRNA-seq) data are essential for biological interpretation of cell processes. Here, we present TRIAGE-Cluster which uses genome-wide epigenetic data from diverse bio-samples to identify genes demarcating cell diversity in scRNA-seq data. By integrating patterns of repressive chromatin deposited across diverse cell types with weighted density estimation, TRIAGE-Cluster determines cell type clusters in a 2D UMAP space. We then present TRIAGE-ParseR, a machine learning method which evaluates gene expression rank lists to define gene groups governing the identity and function of cell types. We demonstrate the utility of this two-step approach using atlases of in vivo and in vitro cell diversification and organogenesis. We also provide a web accessible dashboard for analysis and download of data and software. Collectively, genome-wide epigenetic repression provides a versatile strategy to define cell diversity and study gene regulation of scRNA-seq data. |
format | Online Article Text |
id | pubmed-10287941 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-102879412023-06-24 Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity Sun, Yuliangzi Shim, Woo Jun Shen, Sophie Sinniah, Enakshi Pham, Duy Su, Zezhuo Mizikovsky, Dalia White, Melanie D Ho, Joshua W K Nguyen, Quan Bodén, Mikael Palpant, Nathan J Nucleic Acids Res Methods Online Methods for cell clustering and gene expression from single-cell RNA sequencing (scRNA-seq) data are essential for biological interpretation of cell processes. Here, we present TRIAGE-Cluster which uses genome-wide epigenetic data from diverse bio-samples to identify genes demarcating cell diversity in scRNA-seq data. By integrating patterns of repressive chromatin deposited across diverse cell types with weighted density estimation, TRIAGE-Cluster determines cell type clusters in a 2D UMAP space. We then present TRIAGE-ParseR, a machine learning method which evaluates gene expression rank lists to define gene groups governing the identity and function of cell types. We demonstrate the utility of this two-step approach using atlases of in vivo and in vitro cell diversification and organogenesis. We also provide a web accessible dashboard for analysis and download of data and software. Collectively, genome-wide epigenetic repression provides a versatile strategy to define cell diversity and study gene regulation of scRNA-seq data. Oxford University Press 2023-05-01 /pmc/articles/PMC10287941/ /pubmed/37125641 http://dx.doi.org/10.1093/nar/gkad307 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methods Online Sun, Yuliangzi Shim, Woo Jun Shen, Sophie Sinniah, Enakshi Pham, Duy Su, Zezhuo Mizikovsky, Dalia White, Melanie D Ho, Joshua W K Nguyen, Quan Bodén, Mikael Palpant, Nathan J Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity |
title | Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity |
title_full | Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity |
title_fullStr | Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity |
title_full_unstemmed | Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity |
title_short | Inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity |
title_sort | inferring cell diversity in single cell data using consortium-scale epigenetic data as a biological anchor for cell identity |
topic | Methods Online |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10287941/ https://www.ncbi.nlm.nih.gov/pubmed/37125641 http://dx.doi.org/10.1093/nar/gkad307 |
work_keys_str_mv | AT sunyuliangzi inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity AT shimwoojun inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity AT shensophie inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity AT sinniahenakshi inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity AT phamduy inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity AT suzezhuo inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity AT mizikovskydalia inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity AT whitemelanied inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity AT hojoshuawk inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity AT nguyenquan inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity AT bodenmikael inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity AT palpantnathanj inferringcelldiversityinsinglecelldatausingconsortiumscaleepigeneticdataasabiologicalanchorforcellidentity |