Cargando…
Comparison of dipole-based and potential-based ECGI methods for premature ventricular contraction beat localization with clinical data
Introduction: Localization of premature ventricular contraction (PVC) origin to guide the radiofrequency ablation (RFA) procedure is one of the prominent clinical goals of non-invasive electrocardiographic imaging. However, the results reported in the literature vary significantly depending on the s...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288213/ https://www.ncbi.nlm.nih.gov/pubmed/37362428 http://dx.doi.org/10.3389/fphys.2023.1197778 |
_version_ | 1785062033039818752 |
---|---|
author | Dogrusoz, Yesim Serinagaoglu Rasoolzadeh, Nika Ondrusova, Beata Hlivak, Peter Zelinka, Jan Tysler, Milan Svehlikova, Jana |
author_facet | Dogrusoz, Yesim Serinagaoglu Rasoolzadeh, Nika Ondrusova, Beata Hlivak, Peter Zelinka, Jan Tysler, Milan Svehlikova, Jana |
author_sort | Dogrusoz, Yesim Serinagaoglu |
collection | PubMed |
description | Introduction: Localization of premature ventricular contraction (PVC) origin to guide the radiofrequency ablation (RFA) procedure is one of the prominent clinical goals of non-invasive electrocardiographic imaging. However, the results reported in the literature vary significantly depending on the source model and the level of complexity in the forward model. This study aims to compare the paced and spontaneous PVC localization performances of dipole-based and potential-based source models and corresponding inverse methods using the same clinical data and to evaluate the effects of torso inhomogeneities on these performances. Methods: The publicly available EP solution data from the EDGAR data repository (BSPs from a maximum of 240 electrodes) with known pacing locations and the Bratislava data (BSPs in 128 leads) with spontaneous PVCs from patients who underwent successful RFA procedures were used. Homogeneous and inhomogeneous torso models and corresponding forward problem solutions were used to relate sources on the closed epicardial and epicardial–endocardial surfaces. The localization error (LE) between the true and estimated pacing site/PVC origin was evaluated. Results: For paced data, the median LE values were 25.2 and 13.9 mm for the dipole-based and potential-based models, respectively. These median LE values were higher for the spontaneous PVC data: 30.2–33.0 mm for the dipole-based model and 28.9–39.2 mm for the potential-based model. The assumption of inhomogeneities in the torso model did not change the dipole-based solutions much, but using an inhomogeneous model improved the potential-based solutions on the epicardial–endocardial ventricular surface. Conclusion: For the specific task of localization of pacing site/PVC origin, the dipole-based source model is more stable and robust than the potential-based source model. The torso inhomogeneities affect the performances of PVC origin localization in each source model differently. Hence, care must be taken in generating patient-specific geometric and forward models depending on the source model representation used in electrocardiographic imaging (ECGI). |
format | Online Article Text |
id | pubmed-10288213 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102882132023-06-24 Comparison of dipole-based and potential-based ECGI methods for premature ventricular contraction beat localization with clinical data Dogrusoz, Yesim Serinagaoglu Rasoolzadeh, Nika Ondrusova, Beata Hlivak, Peter Zelinka, Jan Tysler, Milan Svehlikova, Jana Front Physiol Physiology Introduction: Localization of premature ventricular contraction (PVC) origin to guide the radiofrequency ablation (RFA) procedure is one of the prominent clinical goals of non-invasive electrocardiographic imaging. However, the results reported in the literature vary significantly depending on the source model and the level of complexity in the forward model. This study aims to compare the paced and spontaneous PVC localization performances of dipole-based and potential-based source models and corresponding inverse methods using the same clinical data and to evaluate the effects of torso inhomogeneities on these performances. Methods: The publicly available EP solution data from the EDGAR data repository (BSPs from a maximum of 240 electrodes) with known pacing locations and the Bratislava data (BSPs in 128 leads) with spontaneous PVCs from patients who underwent successful RFA procedures were used. Homogeneous and inhomogeneous torso models and corresponding forward problem solutions were used to relate sources on the closed epicardial and epicardial–endocardial surfaces. The localization error (LE) between the true and estimated pacing site/PVC origin was evaluated. Results: For paced data, the median LE values were 25.2 and 13.9 mm for the dipole-based and potential-based models, respectively. These median LE values were higher for the spontaneous PVC data: 30.2–33.0 mm for the dipole-based model and 28.9–39.2 mm for the potential-based model. The assumption of inhomogeneities in the torso model did not change the dipole-based solutions much, but using an inhomogeneous model improved the potential-based solutions on the epicardial–endocardial ventricular surface. Conclusion: For the specific task of localization of pacing site/PVC origin, the dipole-based source model is more stable and robust than the potential-based source model. The torso inhomogeneities affect the performances of PVC origin localization in each source model differently. Hence, care must be taken in generating patient-specific geometric and forward models depending on the source model representation used in electrocardiographic imaging (ECGI). Frontiers Media S.A. 2023-06-09 /pmc/articles/PMC10288213/ /pubmed/37362428 http://dx.doi.org/10.3389/fphys.2023.1197778 Text en Copyright © 2023 Dogrusoz, Rasoolzadeh, Ondrusova, Hlivak, Zelinka, Tysler and Svehlikova. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Physiology Dogrusoz, Yesim Serinagaoglu Rasoolzadeh, Nika Ondrusova, Beata Hlivak, Peter Zelinka, Jan Tysler, Milan Svehlikova, Jana Comparison of dipole-based and potential-based ECGI methods for premature ventricular contraction beat localization with clinical data |
title | Comparison of dipole-based and potential-based ECGI methods for premature ventricular contraction beat localization with clinical data |
title_full | Comparison of dipole-based and potential-based ECGI methods for premature ventricular contraction beat localization with clinical data |
title_fullStr | Comparison of dipole-based and potential-based ECGI methods for premature ventricular contraction beat localization with clinical data |
title_full_unstemmed | Comparison of dipole-based and potential-based ECGI methods for premature ventricular contraction beat localization with clinical data |
title_short | Comparison of dipole-based and potential-based ECGI methods for premature ventricular contraction beat localization with clinical data |
title_sort | comparison of dipole-based and potential-based ecgi methods for premature ventricular contraction beat localization with clinical data |
topic | Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288213/ https://www.ncbi.nlm.nih.gov/pubmed/37362428 http://dx.doi.org/10.3389/fphys.2023.1197778 |
work_keys_str_mv | AT dogrusozyesimserinagaoglu comparisonofdipolebasedandpotentialbasedecgimethodsforprematureventricularcontractionbeatlocalizationwithclinicaldata AT rasoolzadehnika comparisonofdipolebasedandpotentialbasedecgimethodsforprematureventricularcontractionbeatlocalizationwithclinicaldata AT ondrusovabeata comparisonofdipolebasedandpotentialbasedecgimethodsforprematureventricularcontractionbeatlocalizationwithclinicaldata AT hlivakpeter comparisonofdipolebasedandpotentialbasedecgimethodsforprematureventricularcontractionbeatlocalizationwithclinicaldata AT zelinkajan comparisonofdipolebasedandpotentialbasedecgimethodsforprematureventricularcontractionbeatlocalizationwithclinicaldata AT tyslermilan comparisonofdipolebasedandpotentialbasedecgimethodsforprematureventricularcontractionbeatlocalizationwithclinicaldata AT svehlikovajana comparisonofdipolebasedandpotentialbasedecgimethodsforprematureventricularcontractionbeatlocalizationwithclinicaldata |