Cargando…

A Clinical‐Scale Microfluidic Respiratory Assist Device with 3D Branching Vascular Networks

Recent global events such as COVID‐19 pandemic amid rising rates of chronic lung diseases highlight the need for safer, simpler, and more available treatments for respiratory failure, with increasing interest in extracorporeal membrane oxygenation (ECMO). A key factor limiting use of this technology...

Descripción completa

Detalles Bibliográficos
Autores principales: Isenberg, Brett C., Vedula, Else M., Santos, Jose, Lewis, Diana J., Roberts, Teryn R., Harea, George, Sutherland, David, Landis, Beau, Blumenstiel, Samuel, Urban, Joseph, Lang, Daniel, Teece, Bryan, Lai, WeiXuan, Keating, Rose, Chiang, Diana, Batchinsky, Andriy I., Borenstein, Jeffrey T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288269/
https://www.ncbi.nlm.nih.gov/pubmed/37092588
http://dx.doi.org/10.1002/advs.202207455
_version_ 1785062046615732224
author Isenberg, Brett C.
Vedula, Else M.
Santos, Jose
Lewis, Diana J.
Roberts, Teryn R.
Harea, George
Sutherland, David
Landis, Beau
Blumenstiel, Samuel
Urban, Joseph
Lang, Daniel
Teece, Bryan
Lai, WeiXuan
Keating, Rose
Chiang, Diana
Batchinsky, Andriy I.
Borenstein, Jeffrey T.
author_facet Isenberg, Brett C.
Vedula, Else M.
Santos, Jose
Lewis, Diana J.
Roberts, Teryn R.
Harea, George
Sutherland, David
Landis, Beau
Blumenstiel, Samuel
Urban, Joseph
Lang, Daniel
Teece, Bryan
Lai, WeiXuan
Keating, Rose
Chiang, Diana
Batchinsky, Andriy I.
Borenstein, Jeffrey T.
author_sort Isenberg, Brett C.
collection PubMed
description Recent global events such as COVID‐19 pandemic amid rising rates of chronic lung diseases highlight the need for safer, simpler, and more available treatments for respiratory failure, with increasing interest in extracorporeal membrane oxygenation (ECMO). A key factor limiting use of this technology is the complexity of the blood circuit, resulting in clotting and bleeding and necessitating treatment in specialized care centers. Microfluidic oxygenators represent a promising potential solution, but have not reached the scale or performance required for comparison with conventional hollow fiber membrane oxygenators (HFMOs). Here the development and demonstration of the first microfluidic respiratory assist device at a clinical scale is reported, demonstrating efficient oxygen transfer at blood flow rates of 750 mL min⁻(1), the highest ever reported for a microfluidic device. The central innovation of this technology is a fully 3D branching network of blood channels mimicking key features of the physiological microcirculation by avoiding anomalous blood flows that lead to thrombus formation and blood damage in conventional oxygenators. Low, stable blood pressure drop, low hemolysis, and consistent oxygen transfer, in 24‐hour pilot large animal experiments are demonstrated – a key step toward translation of this technology to the clinic for treatment of a range of lung diseases.
format Online
Article
Text
id pubmed-10288269
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-102882692023-06-24 A Clinical‐Scale Microfluidic Respiratory Assist Device with 3D Branching Vascular Networks Isenberg, Brett C. Vedula, Else M. Santos, Jose Lewis, Diana J. Roberts, Teryn R. Harea, George Sutherland, David Landis, Beau Blumenstiel, Samuel Urban, Joseph Lang, Daniel Teece, Bryan Lai, WeiXuan Keating, Rose Chiang, Diana Batchinsky, Andriy I. Borenstein, Jeffrey T. Adv Sci (Weinh) Research Articles Recent global events such as COVID‐19 pandemic amid rising rates of chronic lung diseases highlight the need for safer, simpler, and more available treatments for respiratory failure, with increasing interest in extracorporeal membrane oxygenation (ECMO). A key factor limiting use of this technology is the complexity of the blood circuit, resulting in clotting and bleeding and necessitating treatment in specialized care centers. Microfluidic oxygenators represent a promising potential solution, but have not reached the scale or performance required for comparison with conventional hollow fiber membrane oxygenators (HFMOs). Here the development and demonstration of the first microfluidic respiratory assist device at a clinical scale is reported, demonstrating efficient oxygen transfer at blood flow rates of 750 mL min⁻(1), the highest ever reported for a microfluidic device. The central innovation of this technology is a fully 3D branching network of blood channels mimicking key features of the physiological microcirculation by avoiding anomalous blood flows that lead to thrombus formation and blood damage in conventional oxygenators. Low, stable blood pressure drop, low hemolysis, and consistent oxygen transfer, in 24‐hour pilot large animal experiments are demonstrated – a key step toward translation of this technology to the clinic for treatment of a range of lung diseases. John Wiley and Sons Inc. 2023-04-24 /pmc/articles/PMC10288269/ /pubmed/37092588 http://dx.doi.org/10.1002/advs.202207455 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Isenberg, Brett C.
Vedula, Else M.
Santos, Jose
Lewis, Diana J.
Roberts, Teryn R.
Harea, George
Sutherland, David
Landis, Beau
Blumenstiel, Samuel
Urban, Joseph
Lang, Daniel
Teece, Bryan
Lai, WeiXuan
Keating, Rose
Chiang, Diana
Batchinsky, Andriy I.
Borenstein, Jeffrey T.
A Clinical‐Scale Microfluidic Respiratory Assist Device with 3D Branching Vascular Networks
title A Clinical‐Scale Microfluidic Respiratory Assist Device with 3D Branching Vascular Networks
title_full A Clinical‐Scale Microfluidic Respiratory Assist Device with 3D Branching Vascular Networks
title_fullStr A Clinical‐Scale Microfluidic Respiratory Assist Device with 3D Branching Vascular Networks
title_full_unstemmed A Clinical‐Scale Microfluidic Respiratory Assist Device with 3D Branching Vascular Networks
title_short A Clinical‐Scale Microfluidic Respiratory Assist Device with 3D Branching Vascular Networks
title_sort clinical‐scale microfluidic respiratory assist device with 3d branching vascular networks
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288269/
https://www.ncbi.nlm.nih.gov/pubmed/37092588
http://dx.doi.org/10.1002/advs.202207455
work_keys_str_mv AT isenbergbrettc aclinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT vedulaelsem aclinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT santosjose aclinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT lewisdianaj aclinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT robertsterynr aclinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT hareageorge aclinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT sutherlanddavid aclinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT landisbeau aclinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT blumenstielsamuel aclinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT urbanjoseph aclinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT langdaniel aclinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT teecebryan aclinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT laiweixuan aclinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT keatingrose aclinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT chiangdiana aclinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT batchinskyandriyi aclinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT borensteinjeffreyt aclinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT isenbergbrettc clinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT vedulaelsem clinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT santosjose clinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT lewisdianaj clinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT robertsterynr clinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT hareageorge clinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT sutherlanddavid clinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT landisbeau clinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT blumenstielsamuel clinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT urbanjoseph clinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT langdaniel clinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT teecebryan clinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT laiweixuan clinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT keatingrose clinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT chiangdiana clinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT batchinskyandriyi clinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks
AT borensteinjeffreyt clinicalscalemicrofluidicrespiratoryassistdevicewith3dbranchingvascularnetworks