Cargando…
Quantum entropy and central limit theorem
We introduce a framework to study discrete-variable (DV) quantum systems based on qudits. It relies on notions of a mean state (MS), a minimal stabilizer-projection state (MSPS), and a new convolution. Some interesting consequences are: The MS is the closest MSPS to a given state with respect to the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288630/ https://www.ncbi.nlm.nih.gov/pubmed/37307444 http://dx.doi.org/10.1073/pnas.2304589120 |
Sumario: | We introduce a framework to study discrete-variable (DV) quantum systems based on qudits. It relies on notions of a mean state (MS), a minimal stabilizer-projection state (MSPS), and a new convolution. Some interesting consequences are: The MS is the closest MSPS to a given state with respect to the relative entropy; the MS is extremal with respect to the von Neumann entropy, demonstrating a “maximal entropy principle in DV systems.” We obtain a series of inequalities for quantum entropies and for Fisher information based on convolution, giving a “second law of thermodynamics for quantum convolutions.” We show that the convolution of two stabilizer states is a stabilizer state. We establish a central limit theorem, based on iterating the convolution of a zero-mean quantum state, and show this converges to its MS. The rate of convergence is characterized by the “magic gap,” which we define in terms of the support of the characteristic function of the state. We elaborate on two examples: the DV beam splitter and the DV amplifier. |
---|