Cargando…

Fast and accurate genome-wide predictions and structural modeling of protein–protein interactions using Galaxy

BACKGROUND: Protein–protein interactions play a crucial role in almost all cellular processes. Identifying interacting proteins reveals insight into living organisms and yields novel drug targets for disease treatment. Here, we present a publicly available, automated pipeline to predict genome-wide...

Descripción completa

Detalles Bibliográficos
Autores principales: Guerler, Aysam, Baker, Dannon, van den Beek, Marius, Gruening, Bjoern, Bouvier, Dave, Coraor, Nate, Shank, Stephen D., Zehr, Jordan D., Schatz, Michael C., Nekrutenko, Anton
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288729/
https://www.ncbi.nlm.nih.gov/pubmed/37353753
http://dx.doi.org/10.1186/s12859-023-05389-8
Descripción
Sumario:BACKGROUND: Protein–protein interactions play a crucial role in almost all cellular processes. Identifying interacting proteins reveals insight into living organisms and yields novel drug targets for disease treatment. Here, we present a publicly available, automated pipeline to predict genome-wide protein–protein interactions and produce high-quality multimeric structural models. RESULTS: Application of our method to the Human and Yeast genomes yield protein–protein interaction networks similar in quality to common experimental methods. We identified and modeled Human proteins likely to interact with the papain-like protease of SARS-CoV2’s non-structural protein 3. We also produced models of SARS-CoV2’s spike protein (S) interacting with myelin-oligodendrocyte glycoprotein receptor and dipeptidyl peptidase-4. CONCLUSIONS: The presented method is capable of confidently identifying interactions while providing high-quality multimeric structural models for experimental validation. The interactome modeling pipeline is available at usegalaxy.org and usegalaxy.eu.