Cargando…

Cuproptosis engages in c-Myc-mediated breast cancer stemness

BACKGROUND: Intra-tumoral heterogeneity (ITH) is a distinguished hallmark of cancer, and cancer stem cells (CSCs) contribute to this malignant characteristic. Therefore, it is of great significance to investigate and even target the regulatory factors driving intra-tumoral stemness. c-Myc is a vital...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Runtian, Xu, Kun, Chen, Qin, Hu, Qin, Zhang, Jian, Guan, Xiaoxiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288777/
https://www.ncbi.nlm.nih.gov/pubmed/37353799
http://dx.doi.org/10.1186/s12967-023-04204-5
Descripción
Sumario:BACKGROUND: Intra-tumoral heterogeneity (ITH) is a distinguished hallmark of cancer, and cancer stem cells (CSCs) contribute to this malignant characteristic. Therefore, it is of great significance to investigate and even target the regulatory factors driving intra-tumoral stemness. c-Myc is a vital oncogene frequently overexpressed or amplified in various cancer types, including breast cancer. Our previous study indicated its potential association with breast cancer stem cell (BCSC) biomarkers. METHODS: In this research, we performed immunohistochemical (IHC) staining on sixty breast cancer surgical specimens for c-Myc, CD44, CD24, CD133 and ALDH1A1. Then, we analyzed transcriptomic atlas of 1533 patients with breast cancer from public database. RESULTS: IHC staining indicated the positive correlation between c-Myc and BCSC phenotype. Then, we used bioinformatic analysis to interrogate transcriptomics data of 1533 breast cancer specimens and identified an intriguing link among c-Myc, cancer stemness and copper-induced cell death (also known as “cuproptosis”). We screened out cuproptosis-related characteristics that predicts poor clinical outcomes and found that the pro-tumoral cuproptosis-based features were putatively enriched in MYC-targets and showed a significantly positive correlation with cancer stemness. CONCLUSION: In addition to previous reports on its oncogenic roles, c-Myc showed significant correlation to stemness phenotype and copper-induced cell toxicity in breast cancer tissues. Moreover, transcriptomics data demonstrated that pro-tumoral cuproptosis biomarkers had putative positive association with cancer stemness. This research combined clinical samples with large-scale bioinformatic analysis, covered description and deduction, bridged classic oncogenic mechanisms to innovative opportunities, and inspired the development of copper-based nanomaterials in targeting highly heterogeneous tumors. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-023-04204-5.