Cargando…
Ordering taxa in image convolution networks improves microbiome-based machine learning accuracy
The human gut microbiome is associated with a large number of disease etiologies. As such, it is a natural candidate for machine-learning-based biomarker development for multiple diseases and conditions. The microbiome is often analyzed using 16S rRNA gene sequencing or shotgun metagenomics. However...
Autores principales: | Shtossel, Oshrit, Isakov, Haim, Turjeman, Sondra, Koren, Omry, Louzoun, Yoram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288916/ https://www.ncbi.nlm.nih.gov/pubmed/37345233 http://dx.doi.org/10.1080/19490976.2023.2224474 |
Ejemplares similares
-
Recipient-independent, high-accuracy FMT-response prediction and optimization in mice and humans
por: Shtossel, Oshrit, et al.
Publicado: (2023) -
Using the microbiome in clinical practice
por: Turjeman, Sondra, et al.
Publicado: (2021) -
Microbiome Preprocessing Machine Learning Pipeline
por: Jasner, Yoel, et al.
Publicado: (2021) -
The intersection of undernutrition, microbiome, and child development in the first years of life
por: Fontaine, Fanette, et al.
Publicado: (2023) -
Microbes, metabolites and (synaptic) malleability, oh my! The effect of the microbiome on synaptic plasticity
por: Glinert, Ayala, et al.
Publicado: (2021)