Cargando…
Feasibility study of adaptive radiotherapy for esophageal cancer using artificial intelligence autosegmentation based on MR-Linac
OBJECTIVE: We proposed a scheme for automatic patient-specific segmentation in Magnetic Resonance (MR)-guided online adaptive radiotherapy based on daily updated, small-sample deep learning models to address the time-consuming delineation of the region of interest (ROI) in the adapt-to-shape (ATS) w...
Autores principales: | Wang, Huadong, Liu, Xin, Song, Yajun, Yin, Peijun, Zou, Jingmin, Shi, Xihua, Yin, Yong, Li, Zhenjiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10289262/ https://www.ncbi.nlm.nih.gov/pubmed/37361583 http://dx.doi.org/10.3389/fonc.2023.1172135 |
Ejemplares similares
-
Case Report: MR-LINAC-guided adaptive radiotherapy for gastric cancer
por: Song, Yajun, et al.
Publicado: (2023) -
Influence and optimization strategy of the magnetic field in 1.5 T MR-linac liver stereotactic radiotherapy
por: Liu, Xin, et al.
Publicado: (2023) -
Clinical application of MR-Linac in tumor radiotherapy: a systematic review
por: Liu, Xin, et al.
Publicado: (2023) -
Evaluation of deep learning-based autosegmentation in breast cancer radiotherapy
por: Byun, Hwa Kyung, et al.
Publicado: (2021) -
Feasibility of tumour-focused adaptive radiotherapy for bladder cancer on the MR-linac
por: Mitchell, A., et al.
Publicado: (2022)