Cargando…
Fundus Tessellated Density Assessed by Deep Learning in Primary School Children
PURPOSE: To explore associations of fundus tessellated density (FTD) and compare characteristics of different fundus tessellation (FT) distribution patterns, based on artificial intelligence technology using deep learning. METHODS: Comprehensive ocular examinations were conducted in 577 children age...
Autores principales: | Huang, Dan, Li, Rui, Qian, Yingxiao, Ling, Saiguang, Dong, Zhou, Ke, Xin, Yan, Qi, Tong, Haohai, Wang, Zijin, Long, Tengfei, Liu, Hu, Zhu, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10289270/ https://www.ncbi.nlm.nih.gov/pubmed/37342054 http://dx.doi.org/10.1167/tvst.12.6.11 |
Ejemplares similares
-
Prevalence of Fundus Tessellation and Its Screening Based on Artificial Intelligence in Chinese Children: the Nanjing Eye Study
por: Huang, Dan, et al.
Publicado: (2023) -
Deep Learning Model for Static Ocular Torsion Detection Using Synthetically Generated Fundus Images
por: Wang, Chen, et al.
Publicado: (2023) -
Prediction of the Fundus Tessellation Severity With Machine Learning Methods
por: Shao, Lei, et al.
Publicado: (2022) -
A Multicenter Clinical Study of the Automated Fundus Screening Algorithm
por: Li, Fei, et al.
Publicado: (2022) -
Automatic Multilabel Classification of Multiple Fundus Diseases Based on Convolutional Neural Network With Squeeze-and-Excitation Attention
por: Lu, Zhenzhen, et al.
Publicado: (2023)